Behavior Research Methods & Instrumentation
1981, Vol. 13 (4), 399406

Design and implementation of a
microcomputer-based adaptive testing system

C. DAVID VALE
Assessment Systems Corporation, St. Paul, Minnesota 55114, and
University of Minnesota, Minneapolis, Minnesota 55455

Adaptive testing is a relatively new form of test administration in which a test is tailored
to the individual taking it by choosing items most informative about that person. Methods for
determining which items are most appropriate take on a variety of forms, some requiring
extensive computation, and almost all requiring administration by a computer. The increasing
availability of inexpensive microcomputer systems has made adaptive testing possible when
access to larger computer systems is impractical. To make implementation of a variety
of adaptive testing methods feasible on a microcomputer, a system efficient from both the
examinee’s and the test constructor’s perspectives is necessary. This paper begins by briefly
outlining the strategies of adaptive testing developed to date and showing how, structurally,
they can be grouped into three general categories. Considerations in design of a test-specification
subsystem are then discussed as they relate to this categorization. Finally, a specific implementa-
tion of a subsystem for use under the CP/M microcomputer operating system is described.
Techniques used to make the extensive computations required by adaptive testing feasible on

a microcomputer are presented.

Adaptive, or tailored, testing is a relatively new form
of psychological testing in which a test is tailored to an
individual during the testing process, such that those
items that are most appropriate to the individual and
most informative about the characteristic being measured
are administered. The tailoring is accomplished during,
rather than prior to testing because the appropriateness
of the items is dependent on the individual’s status on
the characteristic being assessed. In the area of ability
measurement, on which most adaptive testing research
has focused, this amounts to administering easy items to
low-ability individuals and difficult items to high-ability
individuals.

Assessment of ability using a test (although adaptive
testing technology is general across many psychological
characteristics, for convenience, discussion here will be
limited to ability) requires that items be administered,
and the choice of the item requires that the ability level
of the examinee be known. Simultaneous selection of
items and estimation of ability does not have a single
optimal solution, but a variety of testing strategies to
approximate the optimal solution have been developed.
There has not yet been firm agreement among researchers
regarding which strategy is best. There has, however,
been almost consensual agreement that all of the strat-
egies are sufficiently complex to require that they be
administered by a computer.

The microcomputer-based testing system described in this
paper was developed at the University of Minnesota under
Contract N00123-79<C-1273 from the Navy Personnel Research
and Development Center, San Diego, California. The author
wishes to thank David J. Weiss for his critical review of an early
draft of this manuscript.

Copyright 1981 Psychonomic Society, Inc.

399

In computerized administration of a test, the examinee
sits in front of an interactive computer terminal on
which questions are presented in textual or graphic
form. The examinee responds to an item by pressing one
or more Keys on a response panel that may vary in com-
plexity from a simple two-button panel (for yes-no.
true-false, etc.) to a panel closely resembling a type-
writer keyboard. Following an examinee’s response to
an item, the computer evaluates the response, selects
the next item, and presents it. At the end of the test, the
computer scores the test. Feedback may or may not be
provided to the examinee during or at the end of the
test.

Development of a computer system to administer
adaptive tests requires several hardware and software
system components. Considerations in selection of
hardware have been discussed by Underwood (Note 1).
General considerations of software have been discussed
by Dewitt and Weiss (1976), who described software
systems for implementing adaptive testing on a general-
purpose timesharing computer and a real-time mini-
computer. This paper, in part, describes a software
system developed to implement adaptive testing on a
microcomputer. More generally, it classifies adaptive
testing procedures into three categories and describes
a testing system that, without modification, can be used
to specify and administer adaptive tests under a wide
variety of specific strategies. The paper is divided into
three sections. The first section describes the major
adaptive testing strategies developed to date and inte-
grates them into the classification scheme. The second
section describes a control language, derived from the
classification, that is useful for specifying adaptive

0005-7878/81/040399-08501.05/0

400 VALE

testing strategies. Finally, the third section describes a
software system in which the control language is incor-
porated into a self-contained microcomputer-based
adaptive testing system.

A CLASSIFICATION OF ADAPTIVE
TESTING STRATEGIES

An adaptive testing strategy consists of a method of
selecting items to administer and a method of converting
the responses to those items into a test score. Item
selection algorithms reduce to one of three types of
branching: from item to item in a predetermined struc-
ture, from subtest to subtest, or as a function of a com-
plex rule specified by a mathematical testing model.
Scoring algorithms reduce to a few of general utility.
In the subsections that follow, major testing strategies
are used to illustrate the basic branching and scoring

types.

Interitem Branching

The interitem branching strategies are conceptually
the simplest of the item selection algorithms. In ability
testing, these strategies are implemented by structuring
an item pool such that each item leads to one of two
other items, depending on its item score (i.e., correct or
incorrect). If the response to an item is correct, testing
continues with a specific prespecified item of, typically,
greater difficulty. If the response is incorrect, testing
continues with a prespecified item of, typically, lesser
difficulty. The defining characteristic of this class of
strategies is that each individual item leads to an invari-
ant set of items dependent solely upon the response to
that item.

Strategies in this category often appear to have
triangular or pyramidal structures when drawn graph-
ically. Figures 1 and 2 show two such strategies, a simple
pyramidal strategy and a Robbins-Monro strategy
(Weiss, Note 2). In all figures representing test strategies
presented in this paper, the horizontal dimension repre-
sents difficulty levels ranging from easy on the left to
difficult on the right. Each node in the diagrams repre-
sents an item. Plus stands for a correct response and
minus for an incorrect response. The Robbins-Monro
process of Figure 2 is actually capable of representing

(DIFFICULT)

(EASY)

Figure 1. A pyramidal testing strategy.

(DIFFICULT)

(EASY)

Figure 2. A Robbins-Monro process.

ROUTING TEST

L]
[]
[]
s S =72 0r3
w
EASY HARD
MEAS. ° MEAS.
TEST TEST
L
(EASY) = = = = = = = = = = - - - (DIFFICULT)

Figure 3. A two-stage testing strategy.

any adaptive testing strategy based on dichotomously
scored items, although that is not its intent as presented
here.

Intersubtest Branching

Intersubtest branching strategies are similar in con-
cept to the interitem strategies. The conceptual differ-
ences stem from the fact that each node in the diagrams
now consists of several items rather than one. This
typically leads to fewer nodes and allows for the possi-
bility of reentrant nodes in which only a portion of the
items in a subtest are administered before branching to
another. The remaining items in the subtest may be
administered at a later time.

The nonreentrant form of this class of item selection
algorithms is exemplified by the multistage strategy or
its simplest case, shown in Figure 3, the two-stage
strategy. In the two-stage strategy, a single routing test
is administered to all examinees. Responses to these
items are scored, and on the basis of the score, one of
several second-stage tests containing items of more
appropriate difficulty is administered. Items in each of
the subtests are typically administered in alinear fashion,
simply starting at the first item and proceeding, without
reconsideration, to the end of the subtest.

In the reentrant form, appropriateness of the sub-

(ENTRY)

}

e

(DIFFICULT)

(EASY)

Figure 4. A flexilevel testing strategy.

tests is reevaluated periodically, and if the subtest
appears inappropriate, administration transfers to
another, keeping a pointer for later return to the subtest.
A simple example of a test of this type is the stradaptive
(stratified adaptive) strategy, in which appropriateness
is evaluated after each item (Vale & Weiss, 1978). If
the response is correct and a more difficult subtest is
available, administration transfers to that subtest.
Similarly, if the response is incorrect, administration
transfers to an easier subtest. The flexilevel test (Lord,
1971), an elementary form of the stradaptive strategy
~ having only two subtests, is shown in Figure 4. In the
flexilevel test, items are grouped into two subtests, one
containing easy items and the other containing difficult
items. In the easy subtest, items are arranged in descend-
ing order with respect to difficulty. In the difficult
subtest, items are arranged in ascending order of dif-
ficulty. Testing begins with the first item in one of the
subtests and transfers to the other if indicated by the
item response (e.g., to the difficult subtest after a
correct response in the easy subtest). This continues
until a predetermined number of items has been admin-
istered.

Model-Based Branching

Model-based branching strategies are most often
based on item response, or latent trait, theory
(Bimbaum, 1968; Lord & Novick, 1968), which assumes
that item responses are probabilistically related by a
specified function to a continuous underlying trait or
ability. In these strategies, the score consists of an
estimate of the level of ability on the underlying trait
that characterizes the individual. Testing begins with
administration of a generally appropriate item. The
trait estimate is updated after each item is administered,
and the next item, at each stage, is determined by
deciding which item, of those available, will bestimprove
the trait estimate. The test structure resulting from these
strategies is relatively amorphous, so no attempt to
diagram such a structure is provided here.

Two general strategies belonging to this class have

MICROCOMPUTER TESTING SYSTEM 401

been proposed to date. One is Bayesian in form and
begins testing by assuming a prior distribution of ability
(Owen, 1975). After each item is administered, a Bayesian
posterior ability distribution is formed from the prior
and the likelihood function characterizing the item
relative to the underlying ability. This posterior dis-
tribution is then used as the prior distribution for the
next stage, and an item is selected to best minimize the
variance of the next expected posterior distribution.

The other strategy is similar, except that it selects
jtems providing the most statistical information
(Birnbaum, 1968; Lord & Novick, 1968) at the current
estimate of the trait. Assumption of the Bayesian
model is not required but may be used if a Bayesian
estimate of the trait is desired. Computationally. this
strategy is somewhat less taxing than the Bayesian
strategy.

Scoring

Scoring methods used for adaptive testing can be
grouped into three general categories: simple, model
based, and custom. Simple methods are exemplified by
the proportion correct, the average difficulty of all
items administered, and the difficulty of the last item
administered. These are all relatively easy to compute
but, unfortunately, have limited interpretability across
the various item selection methods. They are truly
appropriate only for some of the interitem branching
methods. The model-based scoring methods consist of
least squares Bayesian (Owen, 1975), modal Bayesian
(Samejima, 1969), and maximum likelihood (Birnbaum,
1968) scoring. Custom scoring methods are represented
by procedures developed for a single testing strategy,
such as the all-item score for the pyramidal strategy
(Weiss, Note 2) and the interpolated stratum-difficulty
score for the stradaptive strategy (Vale & Weiss, Note 3).

With the exception of the custom scoring methods.
any scoring method can, computationally, be coupled
with any item selection strategy. This may require
imposition of a mathematical model on an item selection
strategy that would not otherwise require it (e.g., to use
Bayesian scoring with a pyramidal item selection strat-
egy), or it may result in a score generally unrelated to
what the items are assessing (e.g., when the proportion-
correct score is used with Bayesian item selection). The
scoring procedures can still reasonably be computed.
There may, however, be some difficulty interpreting
them.

A TEST-SPECIFICATION CONTROL LANGUAGE

In the design of any computerized testing system, one
early concern is how flexible the system will be in its
ability to specify subtly different test forms. The four
strategies presented in the previous section were only
examples and give little indication that a much wider
variety of strategies is possible. In designing a testing
system for research use, a good deal of flexibility is

402 VALE

needed to allow for those variations. If, on the other
hand, the system is for operational use and the strategies
are all prespecified and few in number, flexibility can be
sacrificed for operational simplicity. The test control
language to be discussed in this section was designed
primarily for use in a research environment. It was
designed to allow the flexibility that would be needed,
for example, to change the stradaptive branching strat-
egy from a simple up-one/down-one stratum move-
ment to a movement of one up after a correct response
and two down after an incorrect response. Similarly,
it was designed such that the length, number, and
internal branching characteristics of the multistage
modules could be varied.

In development of the microcomputer-based testing
system, two primary concerns guided the initial planning
of the system: (1) It had to provide the individuals
developing tests an efficient and general means of
specifying test structures, and (2)it had to provide
test administration with minimal delay between a
response and the presentation of the next item. To
make administration delays minimal, as much of the
computation as possible had to be accomplished before
testing began. To keep test-development time to a
minimum, these computations had to be done after
the test developer had completed specification of the
test. To accommodate these speed requirements at both
ends of the process, a batch-type test-specification
system was designed that allowed the test constructor
to prepare a set of specifications and then submit the
specifications for batch processing. During the batch
processing, which required no intervention from the
test developer, the heavy computations were done
and a compact testing module for use during the admin-
istration phase was produced.

The test specifications were designed to be similar to
the control language used by SPSS (Nie, Hull, Jenkins,
Steinbrenner, & Bent, 1975). That is, the general struc-
ture and readability of SPSS was retained. The control
statements were entirely different, however, and a free-
format input and FORTRAN-like jump statements were
added.

Control Statements

The control statements are divided into two classes:
test control statements and module-specification state-
ments. The module-specification statements set up
modules of items required by the test structures dis-
cussed in the previous section. Three module types (not
directly paralleling the three test structures) were
created. A LINEAR structure includes a list of test
items to be administered from beginning to end, unless
terminated, and is not reentrant. A BRANCH module
specifies a set of items interrelated by branch directions.
Branching can be either item to item or item to subtest,
. and this specification can be used for both the interitem
branching strategies and some of the intersubtest branch-

ing strategies. Finally, a SEARCH structure specifies a
list of items to be searched for the one that best meets
the desired statistical properties, as defined by a statisti-
cal testing model.

Four test control statements are used to actually
control the item selection procedure. A LABEL state-
ment identifies a point in the specifications, a JUMP
statement (conditional or unconditional) executes a
jump to a label statement, a SET statement sets a pointer
for use in indirect branching, and a TERMINATE
statement specifies the conditions for test termination.
The remaining control instructions are basically house-
keeping functions. ACCEPT sets the range of acceptable
responses, CLEAR resets all scores and counters. END
terminates the specification statements, SCORE speci-
fies scores to be updated after each item, STATISTICS
specifies scores to be written to a file, WRITE specifies
the amount of information to be written, + denotes a
continuation, and $ denotes a comment.

Specification of Interitem Branching

Test structures defined by interitem branching are
specified using the SET and BRANCH instructions.
A variable, ITEMP, is set to the initial item number
(e.g., the top item in the pyramid), and each item
administered specifies branching actions for each possible
response. Symbolically, the specification is similar to
that shown in Figure 5. In this example, three items are
to be administered. Everyone is to take ITM0OO1. Those
answering incorrectly proceed to ITM002. Those answer-
ing incorrectly proceed to ITM0O3. The procedure will
terminate after administering the third item (i.e., ITM004,
ITMO0S, or ITM006). Specification of the structure
begins by specification of the initial item. Branching

- +
[1tmo02| [17moo3]

Sr ey 2

[1tmo0s] [immoos] [17moos]
(EASY) = = = = = = = = = = - (DIFFICULT)
s
$ SPECIFICATION OF A PYRAMIDAL TEST
$
SET ITEMP = #1TMOO1
BRANCH
#1TMOO01 INCORRECT:#ITM002 CORRECT:#ITMOO3

HITMO02 INCORRECT:#ITMO04
#1TMO03 INCORRECT:#ITHMOOQS
#1TM004

#1TMOO0S

#1TMOO06

$

$ END OF SPECIFICATION

s

END

CORRECT:#ITMOO0S
CORRECT:#ITM006

Figure 5. Specification of a pyramidal test.

is specified for the first two stages. Lack of branch
specifications in the last stage informs the system, by
default, that the module is complete.

Specification of a Robbins-Monro process would be
similar in form. The difference would occur in that each
item would branch to two unique items, with no folding
back as was observed in the pyramidal strategy, in
which ITM002 and ITM003 led to ITMOOS.

Specification of Reentrant Intersubtest Branching
Reentrant intersubtest branching is also implemented
using the BRANCH instruction. This is illustrated using
a flexilevel test diagramed in Figure 6. Eight items are
grouped into two subtests, an easy one consisting of
Items 14 and a difficult one consisting of Items 5-8.
Specification begins by setting two subtest pointers,
P1 and P2, to the beginnings of the two subtests and by
setting the initial pointer to Item 1. The test illustrated
is to be four items long, so the procedure is set to
terminate after administration of four items. The branch
specifications are similar to those used with the pyra-
midal strategy. The important difference is that when a
subtest is exited, the branch is to the pointer indicating
the reentry point ‘in the other subtest and, at the same
time, a return pointer is set indicating the return point

I1TM001 1TM00S
I1TM002 I1TM006
1TM003 1TM007
1TM004 1TMO08
CERSYYU-Tiniia =ite il & - (DIFFICULT)

s

$ SPECIFICATION OF A FLEXILEVEL TEST

s

SET P1=#1TM001, P2=#1TMOOS5, ITEMP=#ITM001

TERMINATE NADMIN=4

BRANCH

s

$ EASY STRATUM (LEFT)
s

#1TMO01 INCORRECT:#ITMO02 CORRECT:P2, P1=#1TM002
#ITMO02 INCORRECT:#I1TMO03 CORRECT:P2, P1=#I1TM0O3
#1TMO03 INCORRECT:#ITMOO4 CORRECT:P2, P1=#ITMOO4
#1TM004

s

$ DIFFICULT STRATUM (RIGHT)

s

#1TMOOS5 INCORRECT:P1, P2=#I1TMO06 CORRECT:#ITMO06
#1TMO06 INCORRECT:P1, P2=#ITMOO7 CORRECT:#ITM007

#1TMO07 INCORRECT:P1,
#1TM008

$

$ END OF TEST SPECIFICATION
S

END

P2=#1TM008 CORRECT:#ITMOOS8

Figure 6. Specification of a flexilevel test.

MICROCOMPUTER TESTING SYSTEM 403

in the subtest exited. Branching within a subtest is done
linearly, using the standard interitem branching method.
Branching was not specified for Items 4 and 8, as it was
unnecessary and there was no appropriate item to
branch to. (Actually, Item 8 will never be reached under
the termination rule used and was included only for
symmetry, so that testing could be initialized with
Item S as well as with Item 1.)

The stradaptive strategy would be implemented in
a similar fashion. One pointer would be set for each
stratum (i.e., subtest), and branching via pointers would
occur in both directions from the inner strata.

Specification of Nonreentrant
Intersubtest Branching

Conceptually, nonreentrant branching could have
been implemented using the reentrant branching capa-
bilities. Practically, however, operational reentrant strat-
egies in general branch on the basis of a single-item
response, whereas the nonreentrant strategies typically
branch on a more complex rule. As the control language
is defined, the branch statement is used only for single-
response branching. More complex rules are imple-
mented using the JUMP statement.

Figure 7 diagrams the specification of a two-stage
testing strategy. The test consists of a routing test
(TO) and two measurement tests (T1 and T2), one of
which will be administered. The choice of measurement
test depends on whether two or more items are answered
correctly in the routing test. If so, Measurement Test T2
will be administered. Otherwise, Measurement Test T1
will be administered. Testing will terminate with the end
of the test specification.

Although linear subtests were used as examples
here, subtests in such a multistage strategy do not have
to be linear. They could as well be pyramidal, Robbins-
Monro, or one of the model-based procedures to be
discussed below.

Specification of Model-Based Branching

Model-based branching strategies typically incorpo-
rate such complex mathematical operations that a
language to explicitly specify the operations would have
to be as basic as FORTRAN. The intent of this specifi-
cation language was to create something a good deal
simpler than FORTRAN, so the model-based search
procedures were limited to single commands. Because
of the extensive computations involved in these
procedures, only one was deemed amenable to a
microcomputer-based system. This was the maximum-
information item search procedure. In this procedure,
an ability estimate is obtained after each item is admin-
istered. Items remaining unadministered at that point
are then evaluated on the basis of the statistical infor-
mation they provide about the underlying ability level.
(Information, as it is used here, is inversely related to
the standard error of measurement for the individual
being tested.) The item expected to provide the most
information is selected for administration.

VALE

(T0)

1TMO01

1TM002

I1TMO03

‘ITHODL 1TMO07
(T1) | 1TMOOS 1TM008| (T2)
1TMO06 _ITH009

(DIFFICULT)

(EASY)

$

$ SPECIFICATION OF A TWO-STAGE TEST
s

$ ROUTING TEST (TO) :
s

LABEL TO

LINEAR

#1TM001

#1TM002

#1TM003

JUMP T1 (NCORR LT 2)
JUMP T2 (NCORR GE 2)
$

$ FIRST MEASUREMENT TEST (T1)
s

LABEL T1

LINEAR

#1TMO004

#1TMOOS

#1TM006

JUMP E1

s

$ SECOND MEASUREMENT TEST (T2)
s

LABEL T2

LINEAR

#1TM007

#1TM008

#1TMO09

JUMP E1

$

$ END OF TEST SPECIFICATION
s

LABEL E1

END

Figure 7. Specification of a two-stage test.

A single statement, SEARCH, is used to implement
this item selection procedure. In the search statement,
the ability estimate to be used in evaluating the infor-
mation is specified and the items to be included are
listed. Figure 8 illustrates a Bayesian testing strategy
(Owen, 1975) in which items are selected on the basis
of expected information. After specifying a termination
rule, the search procedure is invoked, specifying that the
Bayesian score should be used in evaluating information.
The items to be included in the search are simply listed
following the search statement.

The model-based search is the least flexible of all the
branching strategies. Variations in procedure can still
be introduced, however, in the score on which the
search is based and in the criterion used to terminate
the test.

Specification of Scoring Algorithms

Scoring can be done at two points in the testing
process. It can be done after each item, or it can be
done after each test module (e.g., specification state-
ment). Two separate statements are used to specify
these two options. The SCORE statement lists the scores
that are to be calculated after each item is administered.
The STATISTICS statement specifies the scores that are
to be written to a file and, by implication, specifies
the scores that must be calculated before the statistics
are written. It is important that the distinction be made,
because scores forming the basis of a search must be
reevaluated after each item. Some scores require so
much computation, however, that it is undesirable to
calculate them after every item when they are not
needed for the search.

A total of eight scores were included in implementa-
tion of the system. These were the testing time required,
the proportion of correct responses, and three latent
trait scores (a least squares Bayesian estimate, a modal
Bayesian estimate, and a maximum-likelihood estimate)
and their variances.

DEVELOPMENT OF A MICROCOMPUTER-
BASED TESTING SYSTEM

Implementation

A testing system based on the language and struc-
ture discussed in the previous section was implemented
on a Vector Graphic System B microcomputer. The
hardware consisted of a Z80OA microprocessor running
at 4 MHz, 56K of 8-bit read/write memory, two quad-
density minifloppy-disk drives, a memory-mapped
CRT terminal, and miscellaneous interface hardware.
The operating system was CP/M Version 2.1, and the
programming languages used were FORTRANIV
and 8080 assembly language.

In that system, test items and instructional screens
are banked by content areas on several CP/M files, one
file per content area. Instructions, for example, may be
banked on a single file and identified as INS001 to
INS999. These files are developed and maintained as
ASCII source-code files. All entry and editing is done
using the system editor.

The first program in the system, CONVRT, converts
the serial access source files to random-access binary
files. Two versions of each item file are kept. When-
ever modifications are made to a source file, the file is
completely reconverted to a binary file; no individual
modifications are made to the binary file. The binary
file is then used for all further processing within the sys-
tem. The decision to keep a separate source file for each
item file was made primarily for programming con-
venience. As implemented, a separate editor did not have
to be written and test developers do not have to learn
to use a second editor.

Test-specification statements are entered onto another
source file, using the system editor. The test constructor
enters the statements in a manner similar to any other

$
$ SPECIFICATION OF A BAYESIAN TEST

$

TERMINATE (BVAR LT 0.1 OR NADMIN EQ 5)
SCORE BSCORE, BVAR

SEARCH BSCORE

#1TM001

#1TMm002

#1TMO03

#1TM004

#1TM00S5

s

$ END OF TEST SPECIFICATION
$

END

Figure 8. Specification of a Bayesian test.

program. This file contains the complete specification
of the test to be administered. Modifications in the
testing algorithm can thus be implemented by making
changes in this source file.

The second program in the system, TCLCOM, reads
the instructions from the test-specification file and
constructs the test. This requires translating the language
instructions into an object code more easily processed
by a computer. collecting the specified items from
various binary files (possibly residing on several different
disks), and creating a single object file containing all of
the items and test information necessary to administer
the test. Branching information logically belongs with an
item but is. for flexibility, contained in the test specifi-
cations. When the object file is created, this information
is inserted in the appropriate item records. If the specifi-
cation involves a search, information required for the
search is set aside on another file for further processing.

A third program, conceptually part of the second,
continues the processing if a search operation is speci-
fied. To speed the test administration process, the
search computations are done by this program and the
results are put into a large file-resident look-up table.
In this table, items are rank ordered on their accept-
ability at each of 51 locations along the ability scale.
During administration, item selection is simply a matter
of reading the appropriate segment of the table and
searching down it until an unadministered item is
found.

The final program in the system, ADMIN, obtains
its required information from the object file and the
search-table file. It then simply interprets the instruc-
tions on the object file and administers the specified
test. As designed, all of the administration system
resides on one of the disks. This leaves the other disk
free for examinee information. This design allows for
the situation in which an examinee might be routed
through an extensive evaluation process at several
different stations. In this situation, the examinee could
carry his/her evaluation data from one station to the
next on a diskette and simply insert the diskette into
the system at each station. The testing system, on an
appropriate file, would write all of the specified score
information onto this second diskette.

MICROCOMPUTER TESTING SYSTEM 405

Evaluation :

The system developed has thus far been used pri-
marily as an adaptive testing demonstration system.
Preliminary evaluation of the system suggests that a
microcomputer of the size used here can reasonably
be used to administer adaptive tests of most strategies
of interest. All of the general strategies discussed in this
paper have been implemented on the system with
satisfactory results. The only area of difference expected
between this system and a main-frame computer-based
system was the time delay between items. This delay
ranged from 1 to 3 sec on this system, depending on the
strategies evaluated. The search strategy required the
most time because a second disk access was required to
search the table. This delay should not depend on the
size of the test and thus should be no longer than
3 sec, regardless of the number of items searched. Some
improvements suggested but not yet implemented
promise to reduce this time to less than 2 sec. Replace-
ment of the floppy disks with a hard disk would reduce
all delays to well under 1 sec. It should be noted, how-
ever, that even a 3-sec delay is less than must typically
be expected on a larger timeshared system.

As was expected, the amount of time required to
convert source items and source specifications to the
object file was large. A file of 100 items administered
in branched mode required S min to convert the source
items to binary items and nearly 8 min to translate the
specifications to the object file. A typical adaptive test
containing 300 items could be expected to take three
times as long. A test requiring construction of a search
table would take even longer. Fortunately, intervention®
by the test constructor is not required in this batch-
oriented system. This time is thus inconsequential. If,
on the other hand, a fully interactive test construction
system had been developed, this time would be broken
into short intervals between specification statements.
The test constructor would thus be tied to the machine
throughout the process. A batch-oriented process thus
appears to be the appropriate mode for this environ-
ment.

In general, this system has demonstrated that a fully
capable adaptive testing system can be implemented on a
relatively small microcomputer without apparent
degradation of performance. Cost effectiveness of such
an implementation will depend on the environment in
which it is used. It will also depend on the reliability
of the equipment in such an environment, an aspect yet
to be evaluated.

REFERENCE NOTES

1. Underwood, M. A. Computerized adaptive testing and
personnel accessioning system design. In D. J. Weiss (Ed.),
Proceedings of the 1977 computerized adaptive testing conference.
Minneapolis: University of Minnesota, Department of Psychology,
Psychometric Methods Program, July 1978.

2. Weiss, D. J. Strategies of adaptive ability measurement
(Research Report 74-5). Minneapolis: University of Minnesota,

406 VALE

Department of Psychology, Psychometric Methods Program,
December 1974.

3. Vale, C. D., & Weiss, D. J. A simulation study of stradaptive
ability testing (Research Report 75-6). Minneapolis: University of
Minnesota, Department of Psychology, Psychometric Methods
Program, December 1975.

REFERENCES

BirNBAUM, A. Some latent trait models and their use in inferring
an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.),
Statistical theories of mental test scores. Reading, Mass:
Addison-Wesley, 1968.

Dewirr, L. J., & WEe1ss, D. J. Hardware and software evolution
of an adaptive ability measurement system. Behavior Research
Methods & Instrumentation, 1976, 8, 104-107.

Lorp, F. M. The self-scoring flexilevel test. Journal of Educational
Measurement, 1971, 8, 147-151.

Lorp, F. M., & Novick, M. R. Statistical theories of mental
test scores. Reading, Mass: Addison-Wesley, 1968.

Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., &
Bent, D. H. Statistical package for the social sciences. New York:
McGraw-Hill, 1975.

OweN, R. J. A Bayesian sequential procedure for quantal response
in the context of adaptive mental testing. Journal of the
American Statistical Association, 1975, 70, 351-356.

SaMEJIMA, F. Estimation of latent ability using a response pattern
of graded scores. Psychometrika Monograph Supplement, 1969,
17, 1-100.

VaLE, C. D., & Wkiss, D. J. The stratified adaptive ability test
as a tool for personnel selection and placement. T7/MS Studies
in the Management Sciences, 1978, 8, 135-151.

	CCF09082015_00000
	CCF09082015_00007
	CCF09082015_00001
	CCF09082015_00006
	CCF09082015_00002
	CCF09082015_00005
	CCF09082015_00003
	CCF09082015_00004

