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Abstract 

 

A common finding in computerized classification testing (CCT) research, though often not explicitly 

noted, is that observed error rates do not always follow nominal error rates, and in some cases are 

substantially different.  There are likely several contributing factors, including the size of the indifference 

region, which is typically selected arbitrarily rather than empirically, and the information structure of the 

item bank.  This paper will utilize monte carlo simulations to manipulate these two variables, and 

investigate their effect on the observed error rates in CCT.  Both approaches to the likelihood ratio 

criterion (point and composite) will be utilized. 

  



Nominal Error Rates in Computerized Classification Testing 

 

 A common application for computer-based testing is to classify examinees into mutually 

exclusive groups, known as computerized classification testing (CCT).  A large body of research exists on 

CCT, dating back to Ferguson (1967).  Currently, the predominant psychometric algorithm for designing 

CCTs is the likelihood ratio approach based on item response theory (IRT).  This approach has been 

shown to be more efficient than confidence intervals around ability estimates (Spray & Reckase, 1996; 

Rudner, 2002; Thompson, 2009a).  The pass/fail decision is formulated as a ratio, namely the likelihood 

an examinee is above the cutscore divided by the likelihood the examinee is below the cutscore.  There 

are two methods of using the likelihood ratio: a point hypothesis and a composite hypothesis.  The 

sequential probability ratio test (SPRT; Reckase, 1983) operates with a point hypothesis, defining the 

ratio such that a given examinee’s ability value θ is equal to a fixed value below (θ) or above (θ2) the 

cutscore.   

 More recently, it was demonstrated that the SPRT, which only uses fixed values, is less efficient 

than a generalized form which tests whether a given examinee’s θ is below θ or above θ2 rather than 

specifically at each point (Thompson, 2009b).  This formulation is more flexible in that it allows the ratio 

to adjust its definition based on observed data.  Moreover, this composite hypothesis formulation better 

represents the conceptual purpose of the exam, which is to test whether θ is above or below the cutscore. 

Yet the concept of a likelihood ratio test of pass vs. fail remains the same. 

 Using either approach to the likelihood ratio requires the specification of two pieces of 

information.  The space between the two points θ and θ2 is referred to as the indifference region, as the 

test developer is indifferent to the classification assigned.  The indifference region is typically defined 

arbitrarily by adding and subtracting a small number δ from the cutscore.  The likelihood ratio also 

requires the specification of nominal error rates (or conversely, accuracy) that represent the amount of 

classification error the test designer is willing to consider acceptable.  A common finding in CCT 

research, though often not explicitly noted, is that observed misclassification error rates do not always 

follow nominal error rates specified in the algorithm, and in some cases are substantially different (e.g., 

Eggen & Straetmans, 2000; Thompson, 2009b).  The purpose of this paper is to explore CCT 

specifications that possibly affect nominal error rates. 

 There are likely several contributing factors.  An important factor is likely the size of the 

indifference region, which is typically selected arbitrarily or conceptually rather than empirically even 

though it has been shown in Thompson (2009) and Eggen (1999) to directly affect both the accuracy and 

efficiency of a CCT.  The information structure of the item bank is also likely important, because the bank 

must contain enough information to produce the required accuracy.  Additionally, the nominal error rates 

should obviously have impact on observed error rates. 

 This paper will utilize monte carlo simulations to manipulate these three variables, indifference 

region, item bank structure, and nominal error rates, to investigate their effect on the observed error rates 

in classification.  Both approaches to the likelihood ratio criterion will be utilized: the point hypothesis 

method (SPRT), and the composite hypothesis method, known as the generalized likelihood ratio (GLR). 

 

The likelihood ratio approach 

The likelihood ratio for sequential testing (Wald, 1947) compares the ratio of the likelihoods of 

two competing hypotheses.  In CCT, the likelihoods are calculated using the probability P of an 

examinee’s response to item i if each of the hypotheses were true, that is, if the examinee were truly a 

“pass” (P2) or “fail” (P1) classification.  The probability of an examinee’s response X to item i is 

calculated with an IRT item response function.  An IRT model commonly applied to multiple-choice data 

for achievement or ability tests when examinee guessing is likely is the three-parameter logistic model 

(3PL).  With the 3PL, the probability of an examinee with a given θ correctly responding to an item is 

(Hambleton & Swaminathan, 1985, Eq. 3.3): 
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where  

ai is the item discrimination parameter, 

bi is the item difficulty or location parameter, 

ci is the lower asymptote, or pseudoguessing parameter, and 

D is a scaling constant equal to 1.702 or 1.0. 

 

The ratio is expressed as the ratio of the likelihood of a response at two points on θ, θ1 and θ2, 
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Note that, since the probabilities are multiplied, this is equivalent to the ratio of the value of the IRT 

likelihood function at two points.  The ratio is then compared to two decision points A and B, (Wald, 

1947):  

 

 Lower decision point = B =      (2) 

 Upper decision point = A =      (3) 

 

 If the ratio is above the upper decision point after n items, the examinee is classified as above the 

cutscore.  If the ratio is below the lower decision point, the examinee is classified as below the cutscore.  

If the ratio is between the decision points, another item is administered.   

 Formulations of the ratio for CCT differ in the calculation of the probabilities by composing the 

structure of the hypotheses differently.  The calculation of the ratio and the decision points remain the 

same.  The point hypothesis method calculates P1 and P2 at fixed points selected by the test developer, 

while the composite hypothesis method at variable points, wherever the likelihood function is the highest. 

 

Point hypothesis formulation 

 The point hypothesis method suggested by Reckase (1983) is termed the sequential probability 

ratio test (SPRT), and specifies two fixed points θ1 and θ2 on either side of the cutscore.  Conceptually, 

this is done by defining the highest θ level that the test designer is willing to fail (θ2) and the lowest θ 

level that the test designer is willing to pass (θ1).  In practice, however, these points are often determined 

by specifying an arbitrary small constant θ, then adding and subtracting it from the cutscore (e.g., Eggen, 

1999; Eggen & Straetmans, 2000). 

 Therefore, the hypothesis test is structured as  

 

  H0: θ = θ1       (4) 

  H1: θ = θ2.       (5) 

 

 A graphic representation of this method is shown in Figure 1.  In this example, the cutscore is 0.4 

and δ= 0.1, such that θ1 = 0.3 and θ2= 0.5.   The likelihood function is evaluated at these two points, 

producing a ratio of approximately 0.55/0.44 = 1.25.  The likelihood that the examinee is a “pass” is 

greater than the likelihood they are a “fail,” but the classification cannot be made with much confidence at 

this point in the test. 

This is partially due to the relatively small value of δ that is illustrated, which produces a 

relatively small P2 – P1 difference.  It is evident from Figure 1 that increasing the space between θ1 and θ2 



would increase this difference and therefore the likelihood ratio.  The generalized likelihood ratio (GLR) 

is designed to take advantage of this. 

 

Figure 1: Example likelihood function and indifference region 

 
   

 

The generalized likelihood ratio 

 The GLR (Bartroff, Finkelman, & Lai, 2008; Thompson, 2009) is specified and calculated with 

the same methods as the fixed-point SPRT, with the exception that θ1 and θ2 are allowed to vary.  Rather 

than evaluate the likelihood function at each endpoint of the indifference region, instead it is evaluated at 

the highest points beyond the endpoints.  If the maximum of the likelihood function is outside the 

indifference region, that maximum will be utilized in the likelihood ratio for that side.  For example, in 

Figure 1 the maximum is to the right of the indifference region, at 0.0, so the value of the likelihood at 

that point will be utilized in the likelihood ratio.  The side without the maximum is evaluated the same as 

with the SPRT. 

 In the example of Figure 1, this modification to the likelihood ratio now produces a value of 

0.62/0.44 = 1.41.  Because this ratio is further from a ratio of 1.0 than the fixed SPRT value of 1.25, the 

classification can be made with more confidence given the same number of items, or with equal 

confidence given a fewer number of items. 

 

Nominal error rates 

 The accuracy of classifications made with the SPRT and GLR is nominally controlled by the two 

error rates α and β.  Adding these two values and subtracting the result from 1.0 produces the nominal 

accuracy on the proportion metric.  However, CCT research typically reports the percentage correctly 

classified (PCC) rather than the proportion.  In addition, CCT research evaluates the average test length 

(ATL); if a procedure can produce the same accuracy as another procedure but with fewer items, it is 

more efficient and typically considered preferable. 

 Unfortunately, the nominal accuracy does not always match PCC observed in simulation studies.  

Table 1 and Table 2 present such results from past research.  Eggen (1999) was comparing two item 



selection methods based on Fisher information to two methods based on Kullback-Liebler, while Eggen 

and Straetmans (2000) was evaluating the effect of content (C) and exposure (E) constraints on maximum 

information (MI) selection.  In both cases, three levels of nominal accuracy were used: 90%, 85%, and 

80%.  However, all of the observed PCC in Table 1 is near 95%, while all of the observed PCC in Table 2 

is near 90%.  Results similar to Eggen (1999) were also found by Lin and Spray (2000) and Thompson 

(2009). 

 

Table 1: Results from Eggen (1999) 

 

Nominal 

PCC 

Item selection method 

F1 F2 K1a K1b K1c 

ATL PCC ATL PCC ATL PCC ATL PCC ATL PCC 

90 16.0 95.6 16.3 94.7 16.1 95.4 16.3 94.6 15.9 95.5 

85 14.9 95.0 14.0 95.2 13.9 94.8 13.9 95.2 13.9 95.6 

80 13.2 94.9 12.7 94.8 13.2 94.8 12.7 95.3 12.9 94.8 

 

 

Table 2: Results from Eggen & Straetmans (2000) 

 

Nominal 

PCC 

Item Selection Method 

MI MI + C MI + E MI + C + E 

ATL PCC ATL PCC ATL PCC ATL PCC 

90 17.6 90.6 18.4 88.9 18.5 86.8 18.7 88.4 

85 16.7 87.8 16.6 91.1 17.0 88.0 17.8 89.2 

80 15.2 89.5 15.3 88.5 15.9 87.6 16.1 90.0 

 

 Such results suggest that observed accuracy is a function of factors other than nominal accuracy.  

This study is designed to vary item bank structure, termination criterion, and δ in addition to nominal 

accuracy to investigate the possible impact of those variables on observed accuracy.  These factors were 

held constant in Eggen (1999) and Eggen and Straetmans (2000). 

 

 

Method 

 

 A monte carlo simulation was designed to evaluate the four independent variables mentioned 

above.  The levels selected to simulate are presented in Table 3. 

 

Table 3: Independent variables and levels 

 

Variable Levels 

Termination SPRT, GLR 

Indifference region 0.0, 0.1, 0.2, 0.3, 0.4 

Item bank Broad, peaked 

Nominal accuracy 90-99% in increments of 1% 

 

Parameters were generated both banks of 300 items, with the broad bank determined by 

generating a standard deviation of b parameters of 1.5, as compared to 0.5 for the peaked.  The observed 

descriptive statistics of the item parameters are shown in Table 4.  A distribution of 10,000 examinees 

was also randomly generated, from a N(0,1) distribution.  The study simulated a test for each examinee in 



each condition of the study, with the practical test length constraints of a minimum of 20 and a maximum 

of 200. 

 

Table 4: Item bank statistics 

 

 

 

 

 

Results 

 

The results of this study were highly similar to Eggen (1999) in that the observed PCC was near 

95% regardless of the independent variables.  This can be seen in Table 6, which presents the marginal 

means for each independent variable other than nominal PCC.  Item bank and δ accounted for some 

variance in observed PCC, though termination criterion did not.  There was a difference of only 0.01% 

between the accuracy of the GLR and the SPRT, though the GLR used nearly 11 fewer items, on average.  

The peaked item bank performed better with respect to both ATL and PCC because it provides more 

information near the cutscore, where the likelihood ratio is being calculated.  Finally, an increase in δ 

provided a great decrease in test length, but at the expense of a small amount of accuracy. 

 

Table 6: Marginal means of ATL and PCC for termination, bank, and δ 

 

Variable Level ATL PCC 

Termination 

criterion 

GLR 57.66 95.11 

SPRT 68.52 95.12 

Item bank 
Broad 66.26 94.85 

Peaked 58.70 95.38 

δ 

0.0* 80.67 95.24 

0.1 93.95 95.38 

0.2 63.10 95.34 

0.3 46.81 95.09 

0.4 36.98 94.58 

   *GLR only; not possible with SPRT 

 

 

The observed PCC levels remained near 95% even when the nominal PCC was varied (Table 7), 

though as noted with δ, a slight decrease in observed PCC can bring about a substantial decrease in ATL.  

Table 7 also presents the difference between the observed and nominal PCC. 

 

 

 

 

Statistic Broad Peaked 

Mean a 0.71 0.70 

SD a 0.20 0.20 

Mean b -0.50 -0.50 

SD b 1.46 0.51 

Mean c 0.25 0.25 

SD c 0.04 0.04 



 

 

Table 7: Marginal means of ATL and PCC for nominal PCC 

 

Nominal 

PCC 
ATL PCC PCC Diff 

90 52.40 94.88 4.88 

91 53.95 94.98 3.98 

92 55.65 94.96 2.96 

93 57.29 95.03 2.03 

94 59.21 95.04 1.04 

95 61.76 95.10 0.10 

96 64.54 95.17 -0.83 

97 67.75 95.27 -1.73 

98 72.53 95.27 -2.73 

99 79.76 95.44 -3.56 

 

There was little interaction between nominal PCC and termination criterion or item bank, 

possibly because there were only two levels investigated for each.  However, there was a modest 

interaction between nominal PCC and δ.  In Figure 1, the approximate slope of in line decreases as δ 

decreases.  This means that for very small values of δ (0.2 or less), the nominal PCC had virtually no 

effect on observed PCC.  It was always between 95.00 and 95.50.  However, for values of δ greater than 

0.2, a decrease in nominal PCC brought about a decrease in observed PCC. 

 

Figure 1: Observed PCC as a function of nominal PCC and δ 

 

 
 



 

 

Discussion 

 

As found in a number of previous studies, nominal PCC had very little effect on observed PCC.  

This was not surprising, given past evidence; however, it is notable that the three additional variables 

hypothesized to have an effect were found to have little effect either.  It is not that the likelihood ratio 

approach is so robust that it simply provides a high level of accuracy regardless of specifications; when 

the nominal PCC was 0.96 or greater, the procedure actually underperformed, unable to attain that level 

of accuracy. 

Therefore, further research is necessary to investigate other possible variables that might affect 

observed PCC.  One possibility is the location of the cutscore.  This has an effect on observed PCC (Lin 

& Spray, 2000), as it is far easier to make classifications if the cutscore is in the extremes.  Typically, 

only a few items might be needed to classify an examinee above a cutscore of -2.0 or below +2.0.  

However, very few testing applications utilize such extreme cutscores, so a complete understanding of the 

procedure in the context of typical cutscores in the range of -1.0 to +1.0 is still not achieved.  Item 

selection method is another relevant independent variable, but Eggen (1999) and Eggen and Straetmans 

(2000) found little effect on PCC. 

Moreover, these secondary variables remain simply that: secondary.  Only δ and the nominal 

PCC are specifications of the likelihood ratio approach.  So perhaps the issue is in the likelihood ratio 

procedure itself, either in the calculation of the ratio or in the calculation of the upper and lower bounds 

used to make decisions.  There are still improvements to be made, as the GLR was only applied to 

educational assessment recently (Bartroff, Finkelman, & Lai, 2008; Thompson, 2009), as it is still fairly 

recent in the statistical literature (e.g., Huang, 2004).  One possibility is an integrated likelihood ratio 

(Thompson & Ro, 2007), which did not perform adequately, implying that some type of adjustment is 

needed, such as adjustments for the A and B bounds.  This was also suggested by Bartroff, Finkelman, 

and Lai (2008) in the context of the GLR. 

In summary, the GLR remains the most efficient method of classifying examinees into two 

groups, with the SPRT slightly less efficient.  The apparent lack of control over observed accuracy is 

somewhat troubling, though it is not an issue if simulation studies show that it meets the goals of a 

particular testing program.  Further research is needed to explore this issue. 
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