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Abstract. Adaptive measurement of change (AMC) was investigated by examining the recovery of true change. Monte Carlo simulation
was used to compare three conventional testing (CT) methods with AMC. The CTs estimated individual change moderately well when
the test was highly discriminating and when the Þ level matched the test difficulty. However, AMC measured individual change equally
well across the entire range of Þ. AMC with more discriminating items produced the most precise estimates of individual change. AMC
was shown to be superior to CTs under all conditions examined. In addition, AMC is efficient – it can dramatically reduce the number
of items necessary to measure individual change. The results indicate that AMC is a viable and effective method for measuring individual
change.

Keywords: computerized adaptive testing, measuring change, item response theory, residual change score, difference score

Introduction

The measurement of individual change has been one of the
fundamental concepts in psychological and educational re-
search. Education is primarily intended to produce learn-
ing, which should result in changes in achievement level
for each student. In measuring individual change a stu-
dent’s progress can be ascertained by comparing that stu-
dent’s previous status with their current status on some
achievement variable. Similarly, indicators of change are
also important in other areas of psychology. For example,
in measuring an individual’s response to some psycholog-
ical clinical treatment program, it is important to know
whether the individual’s level on a relevant variable (e.g.,
depression) has increased, decreased, or remained constant.
However, the measurement of change at the individual lev-
el has been one of the most controversial issues over the
years (e.g., Bereiter, 1963; Cronbach & Furby, 1970; Em-
bretson, 1995). One of the traditional ways to measure in-
dividual change is simply to compute the difference be-
tween measurements obtained at two points in time, such
as the pretest-posttest paradigm. This simple difference
score is given by (Burr & Nesselroade, 1990; McDonald,
1999)

Dj = Yj – Xj (1)

where Dj is the observed change or difference score for
person j, Yj is the observed score at Time 2, and Xj is the
observed score at Time 1.

Previous research regarding the simple difference score
for the measurement of individual change has identified
major problems:

1) low reliability (Allen & Yen, 1979; Embretson, 1995;
Hummel-Rossi & Weinberg, 1975; Lord, 1963; Willett,
1994, 1997),

2) negative correlation between change scores and initial
status (Cronbach & Furby, 1970; Embretson, 1995; Wil-
lett, 1994, 1997),

3) regression toward the mean (Cronbach & Furby, 1970;
Hummel-Rossi & Weinberg, 1975), and

4) dependence on the scale of measurement employed at
two or more points of measurement (Embretson, 1995;
Hummel-Rossi & Weinberg, 1975).

Several different procedures for estimating change have
been suggested (Lord, 1963; Manning & DuBois, 1962;
Traub, 1967; Tucker, Damarin, & Messick, 1966) in addi-
tion to the simple difference score. The residual change
score (RCS), proposed by Manning and DuBois (1962), is
one of the most frequently advocated alternatives to the
simple difference score (Willett, 1997). Manning and Du-
Bois showed theoretically that the RCS is more reliable
than the simple difference score in most situations. The
RCS reflects the difference between an actual and a pre-
dicted score and is given as

Rj = Yj – Yj′ (2)

Rj = Yj – Y
__

– bY.X (Xj – X
__

) (3)

where, Yj is the observed score at Time 2 for person j, Xj is
their observed score at Time 1, Yj′ is the predicted score
from Xj based on the bivariate linear regression of Y on X,
X
__

and Y
__

are the means of the distributions of observed
scores at Time 1 and Time 2, respectively, and bY.X is the
slope of the linear regression line for predicting Y from X.
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In order to obtain the RCS, group level information is
required to estimate the regression of Y on X. In addition,
the RCS is not the actual amount of change, but indicates
how much different the observed score at Time 2 is from
the predicted value. The RCS is appropriate for studying
the correlates of change, but not for evaluation of individ-
ual change.

Item response theory (IRT) has several advantages over
classical test theory (CTT) and has the potential to reduce
several of the problems inherent in using conventional tests
to measure individual change. A number of researchers
have addressed the issue of measuring change using item
response theory (IRT) models. Fischer (1976) proposed the
linear logistic latent trait model, Bock (1976) developed an
IRT model for growth curves, Andersen (1985) developed
a multidimensional Rasch model for repeated testings, and
Embretson (1991a, 1991b) proposed a multidimensional
Rasch model for learning and measuring change. However,
the model proposed by Embretson is the only IRT model
that provides change parameters for measuring individual
change, but it is restricted to a one-parameter logistic mul-
tidimensional IRT model that requires the unrealistic as-
sumption of equal discriminations across items. The other
IRT models estimate group change (Fischer, 1976), require
group level information (Bock, 1976), or are not designed
to estimate the extent of individual change but to assess the
relationship between the latent trait at two time points
and/or changes in the latent trait across time (Andersen,
1985).

Although previous research based on CTT and IRT has
provided adequate means of measuring change in some sit-
uations, each of the CTT and IRT approaches to date is
limited. It is apparent that a different approach is required
to measure individual change more accurately.

Weiss and Kingsbury (1984) proposed a method for
measuring individual change (which they referred to as
adaptive self-referenced testing) that combined the benefits
of both IRT and computerized adaptive testing (CAT). The
characteristics of CATs are that different items, or sets of
items, are administered to different individuals depending
on each individual’s status on the latent trait as it is contin-
uously estimated during test administration (Weiss, 1982,
1983, 1985, 1995, 2004; Weiss & Kingsbury, 1984). Adap-
tive testing provides the opportunity to match an individ-
ual’s trait level with item difficulty, and the most informa-
tive test can be administered to each individual (Hambleton
& Swaminathan, 1985; Weiss, 1995).

Weiss and Kingsbury’s method, referred to here as adap-
tive measurement of change or AMC, uses CAT and IRT
to obtain estimates of an individual’s Þ level from a domain
of items on occasions separated by an interval of time. In
AMC, the measurement of change for a particular exami-
nee is determined with reference to that examinee’s previ-
ous trait level estimate. Using AMC, change is measured
as the difference between an individual’s estimated levels
of the trait Þj (θ̂j) for two (or more) occasions. Significant
change is said to occur when the IRT-based confidence in-

tervals around the θ̂js for two estimates do not overlap
(Weiss & Kingsbury, 1984). The confidence intervals, or
standard error (SE) bands, are generally approximated as

(4)

where SE | θ̂j is determined from the second derivative of
the log-likelihood function (Weiss, 2005, pp. 10–11; Baker,
1992, pp. 69–72),

(5)

where, asymptotically

(6)

and I(θ̂j) is obtained by substituting θ̂ for Þ after the second
derivative is taken in

(7)

The measurement of change for an individual by AMC is
determined with reference only to that individual, reflect-
ing how the individual’s θ̂ at Time 2 differs from their own
θ̂ at Time 1. However, there has been little empirical re-
search involving AMC for measuring change at the indi-
vidual level.

The objectives of this study were to compare the feasi-
bility of AMC with conventional test methods in measuring
individual change, by examining the recovery of true
change, and by identifying particular experimental condi-
tions under which each procedure better recovered true
change. In addition, the study was a first examination of
the power of AMC to detect different magnitudes of true
change.

Method

Monte Carlo simulation was used to compare four methods
for measuring individual change in terms of recovery of
true change: two CT methods, one CT-based IRT approach,
and the AMC IRT-based CAT approach. The conditions
manipulated to evaluate the recovery of true change were
(1) the Time 1 (T1) trait level, (2) the magnitude and vari-
ability of true change at Time 2 (T2), and (3) the discrim-
ination of the tests.

True Score Distribution

The T1 true Þ values of 1,500 simulated examinees were
generated to have a rectangular distribution with mean 0.0,
standard deviation (SD) of 1.3, and a range from –2.25 to
+2.25. The true Þ range at T1 was divided into three groups
(500 simulees in each group) – low (–2.25 to –0.75), me-
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dium (–0.7499 to +0.7499), and high (+0.75 to +2.25) – to
evaluate the results conditional on Þ.

The distribution of true Þ at T2 for the 1,500 examinees
was generated to reflect only positive true change scores.
For each of the three initial groups, nine different true
change conditions were formed: three different levels of
average true change (low, mean = 0.5; medium, mean =
1.0; and high, mean = 1.5) were crossed with three different
levels of variability of true change (low, SD = .01; medium,
SD = .05; and high, SD = .10). The nine different true
change conditions involving the magnitudes and variabili-
ties of true change were abbreviated as follows: LL (0.5,
0.01), LM (0.5, 0.05), LH (0.5, 0.10), ML (1.0, 0.01), MM
(1.0, 0.05), MH (1.0, 0.10), HL (1.5, 0.01), HM (1.5, 0.05),
and HH (1.5, 0.10). The true Þ value at T2 was obtained by
adding the corresponding true change to the true Þ value at
T1. As a result, 27 true change conditions for T2 were
formed across the entire range of initial true Þ in each item
discrimination condition.

Item Banks

Three item banks were generated to have different average
item discrimination conditions using the 3-parameter logis-
tic model

(8)

where, Pij is the probability of a correct response to item i
by simulee j, Þj is the trait level for simulee j, ai is the
discrimination parameter for item i, bi is the difficulty pa-
rameter for item i, and ci is the pseudo-guessing parameter
for item i.

The three different average item discrimination condi-
tions were low (LD; a

_
= 0.5), medium (MD; a

_
= 1.0), and

high (HD; a
_

= 1.5), respectively, with average standard de-
viation (SD) of 0.15 in each item bank. The distribution of
item difficulties was centered at approximately bi = 0.00
and had 18 intervals from bi = –4.50 to bi = +4.50, with a
range wider than the true T1 Þ range [Þ = –2.25 to +2.25].
The middle six intervals, Þ = –1.5 to +1.5, contained 24
items, while the other 12 intervals (the lowest and highest
six intervals) contained only 12 items per interval. There-
fore, each item bank consisted of 288 items, with more
items available in the middle range for conventional tests
drawn from the same item bank. The pseudo-guessing pa-
rameter for all the items was fixed at 0.20 for all test con-
ditions (Kingsbury & Weiss, 1983; Lord & Novick, 1968;
Urry, 1977; Yen, 1986).

Conventional Test

The conventional tests (CTs) were constructed as parallel
tests to measure individual change. From each item bank,

two parallel 50-item fixed-length CTs were constructed
with item difficulties ranging from –1.5 to +1.5 (Tinkel-
man, 1971; Weiss, 1985). In each of the three item banks,
items for the first CT were selected at random from the
middle six intervals of bi, containing 24 items in each in-
terval in the corresponding item bank, ranging from bi =
–1.5 to bi = +1.5 with mean bi = 0.0. Items for the parallel
test were selected at random from those items not previ-
ously selected in each item bank. A total of six CTs (three
sets of parallel forms) were constructed from the three dif-
ferent item banks.

The item responses for each of the six CTs were gener-
ated using the values of true Þ1 (or Þ2) and the item param-
eters of each set of 50 items using PARDSIM (Assessment
Systems Corporation, 1997). The probability of a correct
response to each item of the test for each simulee was gen-
erated using Equation 8. Then the model-generated proba-
bility matrix was converted to a 1–0 score data matrix by
comparing cell by cell with a matrix of random numbers
generated from a rectangular distribution between 0 and 1.
A correct answer (1) was recorded for a simulee if the ran-
dom number was less than the model-generated probabili-
ty; otherwise, the item was scored as incorrect (0).

The number-correct (NC) scores and the maximum like-
lihood (ML) estimates of Þ (θ̂C1 and θ̂C2) were obtained
using SCOREALL (Assessment Systems Corporation,
1998). The NC scores were also transformed to the Þ metric
(θ̂NC1 and θ̂NC2) using the test response function, to enable
a direct comparison between estimates from CTs and those
from AMC.

CATs

The item responses of all simulees in each of the three item
banks were generated using the values of true Þ1 (or Þ2) and
item parameters for all 288 items using PARDSIM (Assess-
ment Systems Corporation, 1997). The procedure to gen-
erate the item responses was the same as for the CTs, except
that the number of items was different (288 versus 50). As
a result, a 1,500 × 288 item response matrix was construct-
ed from which CATs were administered.

The administration of CAT was performed using POST-
SIM, a program for posthoc simulation of CAT (Weiss,
2005). In administering CAT, the initial Þ value was the
same (Þ = 0) for all simulees at T1. ML estimation (Baker,
1992; Yoes, 1993; Zwick, Thayer, & Wingersky, 1994) was
used to estimate θ̂ at both T1 (θ̂A1) and T2 (θ̂A2). However,
ML estimation cannot be used for nonmixed response pat-
terns (all correct response[s] or all incorrect response[s]),
so a step size of ±3 was used to select the next item until a
mixed response pattern (at least one correct and one incor-
rect response) was obtained. Items in the CATs were select-
ed to provide maximum information at each θ̂ in the CAT
(Hambleton & Swaminathan, 1985; Weiss, 1982; Weiss &
Kingsbury, 1984). The CAT procedure was terminated after
the administration of 50 items at both T1 and T2 to enable
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a direct comparison by matching the number of items in the
CTs. The final ML estimation of Þ obtained at T1 (θ̂A1) was
used as the entry level for the T2 CAT.

Identifying Significant Change with AMC

Based on the final MLE of Þ at T1 (θ̂A1) and the results of
administration of CATs after each item at T2, the power of
AMC was evaluated by determining the number/proportion
of cases in which significant change was observed (defined
as nonoverlapping SE bands at two measurement occa-
sions), for each change condition in each T1 Þ level for each
of three item discrimination conditions. In addition, the
mean number of items administered at T2 and the mean SE
values (SE2,AMC) for only those cases with significant
change were determined.

Approaches to Measuring Change

Four approaches to measuring change were examined. For
the CTs, three scores were used: (1) the simple difference
score (SDS) was obtained by substituting the transformed
value of NC scores to the Þ metric at T2 (θ̂NC2,j) and at T1
(θ̂NC1,j) into Equation 1; (2) the RCS was similarly opera-
tionalized based on Equations 2 and 3, using transformed
values of NC scores to the Þ metric, θ̂NC2,j and θ̂NC1,j, cor-
responding to the NC scores at T2 and T1, respectively, and

(9)

(3) the IRT-scored difference score (IRTDS) was defined as
the difference between θ̂C1,j and θ̂C2,j using ML θ̂s. For AMC,
the difference score (AMCDS) was defined as the difference
between the ML θ̂s at T1 and T2 (θ̂A1,j and θ̂A2,j).

Evaluation Criteria

Recovery of True Change

How well each of the four approaches recovered true change
was evaluated using Pearson product-moment correlation co-
efficients, root mean square error (RMSE), and the average
bias (BIAS) between true and estimated change values for
each of the 27 different change conditions across initial (T1)
Þ level, within each of the three different item discrimination
conditions. In computing these indices, dj was the true change
value (Þ2j – Þ1j) and d̂j was each of the observed change values
(SDS, RCS, IRTDS, and AMCDS). Thus, the correlation was
computed as r(dj,d̂j), RMSE was computed as

(10)

and BIAS was computed as

(11)

Positive BIAS indicates underestimating the true change
and a negative value reflects overestimating true change.

Effect Sizes

Effect sizes were computed for each of the three evaluative
criteria. The study design was a repeated measures
ANOVA for each of the three evaluative criteria (Howell,
1992) with two between-subjects factors: item discrimina-
tion test conditions (LD, MD, and HD) and three levels of
T1 Þ (Þ1: low, medium, and high); and three within-subjects
factors: approaches to measuring change (SDS, RCS,
IRTDS, and AMCDS), three levels of magnitude of true
change, and three levels of variability of true change.

Effect size was calculated as

(12)

where SSEffect is the sum of squares of each main effect or
interaction, and SStotal is the total sum of squares. Because
the distributions of r, RMSE, and BIAS were skewed, they
were transformed as follows (Hays, 1988; Howell, 1992;
Yoes, 1993):

(13)

LMSE = log10(RMSE + 1), and (14)

LBIAS = log10(BIAS +1) (15)

Results

Descriptive Statistics

Table 1 shows that the mean values of estimated Þ from the
CTs (θ̂NC1, θ̂NC2, θ̂C1, θ̂C2) closely approximated the corre-
sponding true T1 Þ and T2 Þ values, respectively, and their
SDs were close to those of true T1 and T2 Þ values for the
medium T1 Þ level. However, for the low and high Þ group,
mean CT θ̂s deviated from the corresponding true mean
values, and their SDs were larger. This trend was pro-
nounced for the MD and HD test condition. The mean ML
θ̂C1 and θ̂C2 values were substantially smaller than true Þs
for the high T1 Þ level of the HD test condition–1.38 for
θ̂C1 and 1.82 for θ̂C2.

However, Table 1 also shows that for AMC the observed
mean θ̂A1 and θ̂A2 reflected the corresponding true Þ values
(Þ1,Þ2) across all conditions. The SDs of θ̂A1 and θ̂A2 were
also very similar across all conditions.
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Table 1. Average of means and SDs of true and estimated Þs across low, medium, and high variability of change conditions
for combinations of LD, MD, and HD tests and low, medium, and high Þ groups

Test condi-
tion and Þ1

level

Þ1 Þ2 θ̂NC1 θ̂NC2 θ̂C1 θ̂C2 θ̂A1 θ̂A2

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

LD Low Þ –1.501 0.424 –0.500 0.428 –1.583 0.840 –0.527 0.690 –1.564 0.807 –0.518 0.675 –1.504 0.542 –0.507 0.555

Med Þ 0.001 0.429 1.001 0.434 0.005 0.652 1.045 0.678 0.010 0.633 1.048 0.662 0.004 0.549 1.021 0.561

High Þ 1.503 0.446 2.504 0.450 1.588 0.713 2.620 0.820 1.578 0.693 2.621 0.847 1.531 0.555 2.529 0.594

MD Low Þ –1.501 0.424 –0.500 0.428 –1.844 1.213 –0.574 0.683 –1.532 0.725 –0.514 0.547 –1.493 0.472 –0.502 0.483

Med Þ 0.001 0.429 1.001 0.434 –0.014 0.501 1.072 0.629 –0.012 0.497 1.026 0.532 0.006 0.493 1.011 0.489

High Þ 1.503 0.446 2.504 0.450 1.628 0.791 2.901 1.064 1.511 0.531 2.162 0.395 1.500 0.500 2.516 0.505

HD Low Þ –1.501 0.424 –0.500 0.428 –2.110 1.485 –0.603 0.752 –1.396 0.700 –0.488 0.487 –1.497 0.462 –0.495 0.457

Med Þ 0.001 0.429 1.001 0.434 –0.003 0.505 1.150 0.808 0.009 0.488 0.971 0.464 0.000 0.456 1.005 0.460

High Þ 1.503 0.446 2.504 0.450 1.835 1.168 3.529 1.135 1.378 0.403 1.817 0.205 1.509 0.473 2.514 0.482

Table 2. Average correlations of observed Time 1 and Time 2 scores, and of true and observed Time 1 and Time 2 scores,
across low, medium, and high variability of change conditions for combinations of LD, MD, and HD tests and
low, medium, and high Þ groups

Test condition
& Þ1 level

(θ̂NC1, θ̂NC2) (θ̂C1, θ̂C2) (θ̂A1, θ̂A2) (θ1, θ̂NC1) (θ1, θ̂C1) (θ1, θ̂A1) (θ2, θ̂NC2) (θ2, θ̂C2) (θ2, θ̂A2)

LD Low Þ 0.390 0.402 0.590 0.575 0.587 0.763 0.667 0.683 0.768

Med Þ 0.465 0.485 0.598 0.698 0.712 0.776 0.675 0.692 0.763

High Þ 0.353 0.372 0.586 0.627 0.656 0.775 0.543 0.542 0.762

MD Low Þ 0.407 0.468 0.771 0.536 0.579 0.873 0.757 0.814 0.893

Med Þ 0.663 0.713 0.791 0.859 0.873 0.899 0.784 0.828 0.896

High Þ 0.370 0.384 0.790 0.668 0.780 0.901 0.548 0.517 0.894

HD LowÞ 0.368 0.455 0.873 0.486 0.530 0.939 0.752 0.872 0.941

Med Þ 0.672 0.775 0.871 0.898 0.913 0.936 0.760 0.861 0.942

High Þ 0.281 0.260 0.873 0.646 0.793 0.946 0.461 0.358 0.935

Table 3. Average of means and SDs of change scores across low, medium, and high variability of change conditions for
combinations of LD, MD, and HD tests and low, medium, and high Þ groups

Test condition
and Þ1 level

True change SDS RCS IRTDS AMCDS

Mean SD Mean SD Mean SD Mean SD Mean SD

LD Low Þ 1.001 0.054 1.056 0.856 0.000 0.635 1.050 0.818 1.010 0.774

Med Þ 1.001 0.054 1.040 0.689 0.000 0.600 1.039 0.659 1.017 0.498

High Þ 1.001 0.054 1.022 0.877 0.000 0.767 1.050 0.873 0.998 0.525

MD Low Þ 1.001 0.054 1.271 1.235 0.000 0.626 1.047 0.635 0.994 0.324

Med Þ 1.001 0.054 1.085 0.484 0.000 0.474 1.045 0.389 1.005 0.315

High Þ 1.001 0.054 1.273 1.065 0.000 0.986 0.772 0.498 1.016 0.326

HD Low Þ 1.001 0.054 1.507 1.438 0.000 0.704 0.995 0.634 1.003 0.232

Med Þ 1.001 0.054 1.152 0.624 0.000 0.612 0.995 0.315 1.005 0.233

High Þ 1.001 0.054 1.694 1.381 0.000 1.075 0.625 0.360 1.005 0.241
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Correlations Between Observed T1 and T2
Scores, and Between True and Observed
Scores

Table 2 shows that the correlations between two observed
scores and between true Þs and observed scores at T1 and
T2, based on CTs, were higher for the medium T1 Þ group
(.47 to .91) than for the low (.37 to .87) and high T1 Þ group
(.28 to .79) across all item discrimination test conditions.
The correlations involving the estimates from adaptive test-
ing (θ̂A1 & θ̂A2, θ̂1 & θ̂A1, and θ̂2 & θ̂A2), also shown in Table
2, were higher than those from CTs for all conditions and
increased as the discrimination of test items increased. Fur-
thermore, unlike the correlation results from CTs, those
from adaptive tests were similar across the true T1 Þ levels.

Change Scores

The mean AMCDS values reflected the average true
change values across all conditions (Table 3). Furthermore,
the SDs of AMCDS were much smaller (.23 to .77) than
those from CTs (SDS, RCS, IRTDS) for most T1 Þ levels
and for all item discrimination test conditions (.32 to 1.44).
The SDs of AMCDS decreased as the discrimination of test
items increased; however, they were still noticeably larger
than those of true change (.05).

Table 3 also shows that the mean change scores of SDS

and IRTDS reflected the average true change values for the
medium T1 Þ level and for the low discrimination (LD) test
condition (Table 3). The SDs for the CTs (0.31 to 1.44)
were uniformly higher than those of AMCDS (.23 to .77)
and those of the average true change (0.05). The mean RCS
values were zero for all conditions. In comparing the ob-
served change scores, these results showed that AMC best
reflected the average true change values and resulted in the
smallest SDs across all conditions examined in this study.

Recovery of True Change

Correlations

Figure 1 shows results for Pearson correlations as the index
for recovery of true change by the observed change scores
for each of the nine test conditions. AMCDS had consis-
tently highest correlations of true change with estimated

Figure 1. Recovery of true change as
indexed by r.

Table 4. Recovery of true change by the SDS, RCS, IRTDS,
and AMCDS, combining the three Þ levels and the
nine change conditions, as indexed by the product-
moment correlation (r)

Item discrimination SDS RCS IRTDS AMCDS

LD 0.449 0.014 0.482 0.637

MD 0.450 0.011 0.589 0.797

HD 0.474 0.009 0.630 0.877

Figure 2. Recovery of true change as
indexed by RMSE.

54 G. Kim-Kang & D.J. Weiss: Adaptive Measurement of Individual Change

Zeitschrift für Psychologie / Journal of Psychology 2008; Vol. 216(1):49–58 © 2008 Hogrefe & Huber Publishers



change across all conditions. However, the correlations for
all methods, including AMCDS, were quite low, reaching
a maximum of .24, because of restriction of range. Table 4
shows Pearson correlations combining all Þ the levels and
the change conditions for each item discrimination condi-
tion. As Table 4 shows, correlations of estimated change
with true change were considerably higher than those in
Figure 1, ranging from 0.449 for the LD condition for SDS
to .877 for AMCDS for the HD condition. Table 4 also
shows that IRTDS improved the recovery of true change
relative to SDS, and RCS did not recover true change at all.

The results of the repeated-measures ANOVA for the
transformed r values indicated that the largest effect size
was due to the variability of true change, which accounted
for 45% of the total variance in the recovery of true change.
Mean r for low, medium, and high levels of variability of
true change, across all item discrimination test conditions,
T1 Þ levels, magnitudes of true change, and approaches to
measuring change, were .020, .097, and .185, respectively.
These results show that as the true change was more vari-
able, the more likely it was to be recovered by the observed
change scores, as indexed by r.

The effect having the second largest effect size for the
transformed r was the approach to measuring change,
which accounted for 11% of the total variance in the recov-
ery of true change. The average r values for the SDS, RCS,
IRTDS, and AMCDS across all other conditions were .068,
.090, .097, and .159, respectively, indicating that AMCDS
best recovered true change among all the observed change
scores examined, followed by IRTDS, RCS, and SDS; the
low values of these correlations were the result of restric-
tion of range within each Þ group.

Root Mean Squared Error

RMSE values obtained for recovery of true change by the
observed change scores  are shown in Figure 2.  The
ANOVA indicated that the largest effect size for the trans-
formed RMSE values was due to the approach to measuring
change, which accounted for 67% of the total variance in
the recovery of true change. The mean RMSE values for
the SDS, RCS, IRTDS, and AMCDS, across the item dis-

crimination test conditions, T1 Þ levels, magnitudes of true
change, variabilities of true change, were 0.989, 1.273,
0.602, and 0.346, respectively, indicating that the AMCDS
resulted in the lowest RMSE value (.346) and, therefore,
was the approach to measuring change that best recovered
true change among all the change scores examined, fol-
lowed by IRTDS, SDS, and RCS.

Average BIAS

The average BIAS values as the index for recovery of true
change by the observed change scores are presented in Fig-
ure 3. AMCDS was the only method to have essentially
zero BIAS between estimated and true change across all
conditions. The largest effect size for the transformed BIAS
values was due to the approach to measuring change, which
accounted for 66% of the total variance in the recovery of
true change. The average BIAS values for the SDS, RCS,
IRTDS, and AMCDS across all item discrimination test
conditions, T1 Þ levels, magnitudes of true change, vari-
abilities of true change, were –0.232, 1.001, –0.008, and
–0.005, respectively, indicating that the AMCDS recovered
true change with virtually no bias. Among the observed
change scores based on CTs, IRTDS was the approach to
measuring individual change that best recovered true
change, followed by SDS and RCS.

Identifying Significant Change With AMC

In AMC, significant change was defined as nonoverlapping
SE bands at two measurement occasions. Figure 4a pre-
sents the mean number of cases in which significant chang-
es were observed, and Figure 4b shows the mean number
of items administered to identify significant change, for
three Þ groups and three levels of true change. As item
discrimination increased, the mean number of cases of sig-
nificant change (out of 500) substantially increased, from
161 cases for the LD test condition (power = 0.32) to 392
cases (power = 0.784) for the HD test condition (Figure
4a). At the same time, the mean number of items adminis-
tered decreased from 17 items for the LD to 11 items for

Figure 3. Recovery of true change as
indexed by BIAS.
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the HD test condition (Figure 4b). Under the HD test con-
dition, when the magnitude of true change was high (Þ =
1.5), significant change was identified after administration
of an average of only about 6 items (Figure 4b) with power
approximating 1.0.

The mean SE(Þ2,50) was computed for the full-length
(50-item) T2 CATs and compared to SE2,AMC for the simu-
lees for which significant change was identified by AMC.
Mean SE(Þ2,50) ranged from .149 to .385. Mean SE2,AMC

were somewhat larger, ranging from .305 to .602, with sub-
stantially fewer items (an average of 6 to 21 items vs. 50
items).

Discussion and Conclusions

The CTs estimated individual change reasonably well when
the tests were highly discriminating and when the Þ level
matched the test difficulty at T1. The SDs for the change
scores based on CTs were smaller and the correlations be-
tween the true and estimated values were higher in the me-
dium Þ condition than in either the low or high Þ condition.
The CTs recovered true change best for the medium Þ level
at T1 and this tendency became more pronounced as the
discrimination of the test items increased, indicating that
increasing item discrimination on the CTs improved the
recovery of true change. These results suggest that CTs
measure individual change best when the range of Þ is tar-

geted to the item difficulty level of a test. However, none
of the approaches to measuring individual change based on
the CTs recovered true change better than AMC.

Unlike the CT approaches, which functioned differently
at different levels of Þ, AMC measured individual change
equally well for all T1 Þ level groups. AMCDSs reflected
the average true change values, and the SDs for the
AMCDS were smaller than any of the CT measures for all
levels of Þ and for all three test conditions of item discrim-
ination. Similar SDs for the AMCDS were observed across
all Þ levels within each item discrimination condition, and
they decreased as item discrimination increased, indicating
that more discriminating items in the AMC produced more
precise estimates of change at the individual level.

The ANOVA results indicated that approaches to mea-
suring change was the only factor, among the main effects
and interactions, that had a strong impact on the recovery
of change, accounting for 11%, 67%, and 66% of the total
variance by r, RMSE, and BIAS, respectively. The lowest
values of RMSE and BIAS were obtained for the AMCDS
among the approaches examined. AMCDS correlations
were the highest among methods for measuring change.
These results indicate that estimates of change scores
across conditions were closer to the true change scores for
the adaptive measures than for any of the measures of
change based on conventional tests.

Analysis of the occurrence of significant change indicat-
ed good T2 efficiency in that AMC detected significant
change – defined by nonoverlapping confidence intervals

Figure 4a. Mean number of cases of
significant change identified by
AMC.

Figure 4b. Mean number of items re-
quired at T2 for AMC to identify sig-
nificant change (50 items were admin-
istered at T1).
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for the two CAT Þ estimates – after only 6 to 21 items were
administered at T2 (vs. 50 items for the CTs). As the test
became more discriminating and the mean magnitude of
true change was high (1.5 in Þ units), significant change
was detected with an average of only six items adminis-
tered. Mean AMC SEs for the significant change cases
were similar to those based on 50 items, even with the sub-
stantially reduced test lengths. The power of AMC to detect
true change was highest with highly discriminating items;
in this condition for high and medium change across the
entire range of Þ, power to detect true change was between
0.94 and 1.00, with an average of fewer than 12 items.

The results of this study have implications for the design
and implementation of AMC. First, high item discrimina-
tion, accompanied by wider range of item difficulty (bi =
–4.5 to +4.5) than the true Þ range (Þ = –2.25 to +2.25), is
an important condition when designing an item bank for
AMC, since an item bank with highly discriminating items
provided the most precise estimates of individual change
and high power in detecting true change under several com-
binations of conditions. Second, similar SDs and measure-
ments of equal precision for simulees for AMC were re-
ported across T1 Þ levels within each of the three different
item discrimination conditions, indicating that change mea-
surement using AMC would not be affected by T1 Þ level.
Third, as expected, the magnitude of change is an influen-
tial condition for the detection of significant change by
AMC. As the magnitude of true change increased, AMC
was able to detect more cases of significant change and the
significant changes could be detected with fewer items. Fi-
nally, the maximum number of items (50 items) criterion
was used as the termination criterion during the adminis-
tration of AMC at both measurement occasions to enable
a direct comparison of results from CTs and from AMC.
However, when nonoverlapping SE bands were used as an
AMC termination criterion, the average number of items
administered was at most 21– much less than 50 items. This
result supported the use of nonoverlapping SE bands as a
termination criterion in measuring individual change, but
more refined research for appropriate termination criteria
for the AMC is required to increase the power of AMC to
detect true change, particularly with low discriminating
items.

Conclusions

The results of this study indicate that AMC is a viable and
effective method for measuring individual change. It per-
formed best for all criteria examined in this study. In addi-
tion, AMC is efficient – it can dramatically reduce the num-
ber of items necessary to measure individual change. AMC
was shown to be superior to conventional testing approach-
es for measuring individual change in terms of the recovery
of true change under the conditions examined. The condi-
tions of this study were restricted to measuring individual
change at two points in time using an item bank that fa-

vored a conventional testing strategy, in addition to fixed
CAT termination at 50 items.

More extensive research on AMC needs to be per-
formed, including identification of the optimal conditions
for measuring individual change when examining change
over more than two points in time. This would include de-
termining the characteristics of the item bank required to
accurately measure individual change at multiple occa-
sions. It is also important to determine what additional ter-
mination criteria might be appropriate for multiple occa-
sions of measurement if significant change has not oc-
curred between measurement occasions; for example,
terminating a CAT when Þ estimates and/or their standard
errors have stabilized.
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