Effect of θ **Estimation Method and Starting Value on the Recovery of** θ

Rick Guyer Assessment Systems Corporation

David J. Weiss University of Minnesota

Purpose

- Guyer (2008) examined the effect of misfit on the recovery of θ in Computerized Adaptive Testing (CAT)
 - Observed that Weighted Maximum Likelihood (WML) was sensitive to initial item difficulty when misfit was present
 - Expected a Posteriori (EAP) estimation provided less biased θ estimates in the presence of misfit

Purpose

Present study

- Determine if sensitivity of WML to initial item difficulty replicates when no misfit is introduced
- Vary starting θ value and generating θ
- Compare alternatives to Maximum Likelihood (MLE) when the response pattern is not mixed

Method

Independent Variables:

- $-\theta$ estimation method:
 - Expected a Posteriori (EAP)
 - Weighted maximum likelihood (WML)
 - Maximum likelihood (MLE) with
 - Arbitrary θs until the response pattern is mixed
 - » Starting θ value incremented by 1
 - WML estimation until the response pattern is mixed
 - EAP estimation until the response pattern is mixed
- Generating θ
 - -2, -1, 0, 1, 2

Method

Independent Variables:

- Starting θ estimate
 - −2, −1, 0, 1, 2

Dependent Variables

Bias

Empirical SE

 $\sum_{i=1}^{N} \hat{\theta}_{i} - \theta$

N

i=1

2

 $\sum_{i=1}^{N}$ $\hat{\boldsymbol{\theta}}_i - \boldsymbol{\theta}$ N

Procedure

- Monte Carlo Design
 - Item parameters for the 300 items generated using the following distributions:

 $a \sim \log-normal(-.223, 0.2), b \sim U[-3.5, 3.5], c \sim N(.20, .02)$ In the logistic metric, the mean of a was 0.82 with an SD = .15

- 1,000 replications performed for each cell
- Item responses were generated according to the 3PL model

Procedure

- ► CAT
 - The program R was used for the CAT simulation in this study
 - Maximum information item selection was used for all conditions in this study
 - Dependent variables were calculated after 10-35 items were administered in the CAT

Empirical SE

RMSE

Average Bias

Empirical SE

Results

Recovery of θ After 15 Items

- WML and MLE+WML had lowest bias and RMSE when generating θ and initial θ were equal
 - Bias/RMSE increased as difference between generating θ and initial θ increased
 - WML showed sensitivity to initial item difficulty
- EAP had the largest bias but the lowest SEs though bias decreased as generating θ approached the prior mean of 0

Results

• Recovery of θ After 15 Items

- MLE+EAP had similar results as MLE+ARB except when generating $\theta = -2$ and starting $\theta = 2$
 - MLE+EAP had second lowest SE/RMSE when generating θ and initial θ differed by 3+ SD

• Recovery of θ After 35 Items

- Bias of EAP remained far greater than the other four θ conditions when generating $\theta \neq 0$
- EAP consistently had the lowest SEs
- RMSEs of the five methods converged

Theta Estimates as a function of *b* for response pattern (1,1,1,1,1) with aD = 1 and c = 0.2

b parameter

Conclusions

Alternatives to MLE for non-mixed response patterns

- EAP recommended when the response pattern is not mixed
- WML not recommended due to its sensitivity to initial item difficulty
 - Especially problematic for high ability examinees
- Arbitrary values also not recommended

WML is sensitive to initial item difficulty – early in the CAT