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Abstract 

Assessing individual change is an important topic in both psychological and educational 

measurement. An adaptive measurement of change (AMC) method had previously been shown 

to exhibit greater efficiency in detecting change than conventional non-adaptive methods. 

However, little work had been done to compare different procedures within the AMC 

framework. This study introduced a new item selection criterion and two new test statistics for 

detecting change with AMC that were specifically designed for the paradigm of hypothesis 

testing. In two simulation sets, the new methods for detecting significant change improved upon 

existing procedures by demonstrating better adherence to Type I error rates and substantially 

better power for detecting relatively small change.  

Keywords: change, individual change, measuring change, computerized adaptive testing, 

likelihood ratio, Kullback-Leibler information. 
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 In psychological testing, the assessment of individual change is often critical when 

tracking the trajectory of a patient. For instance, a practitioner might measure a patient’s initial 

level of severity along some domain (such as depression, phobia, or headache impact) using a 

questionnaire or inventory. Once the patient has undergone treatment, another (or the same) 

questionnaire is administered for purposes of comparison. A statistical test might then be used to 

determine whether significant improvement or decline (or neither) has occurred since the initial 

measurement. 

Assessing individual change is also important in the field of educational testing. Teachers 

often seek to ascertain whether a student has advanced or regressed between examinations. 

Advancement might be made through teaching or practice of the material; regression might 

occur if the student forgets material that had previously been mastered. Because the 

determination of change is again made on the basis of responses to test items, resulting in test 

scores with varying amounts of error, the same psychometric and statistical issues are common 

to measuring individual change in both the educational and psychological realms.  

Measuring individual change has been controversial in the psychometric literature 

(Bereiter, 1963; Cronbach & Furby, 1970; Embretson, 1995). Since Cronbach and Furby’s call 

for a moratorium on attempts to measure individual change, based on their evaluation of classical 

test theory methods for measuring change, there have been a number of attempts to address the 

problem. 

One traditional approach to measuring individual change is to compute the simple 

difference between scores obtained on two (or more) occasions (e.g., Time 1 and Time 2), such 

as in a pretest-posttest paradigm (e.g., Burr & Nesselroade, 1990; McDonald, 1999). Previous 

research regarding this simple difference score for the measurement of individual change has 
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demonstrated that it has major problems, including low reliability (Embretson, 1995; Hummel-

Rossi & Weinberg, 1975; Lord, 1963; Willett, 1994, 1997), negative correlation between change 

scores and initial status (Cronbach & Furby, 1970; Embretson, 1995; Willett, 1994, 1997), 

regression toward the mean (Cronbach & Furby, 1970; Hummel-Rossi & Weinberg, 1975), and 

dependence on potentially different scales (Embretson, 1995; Hummel-Rossi & Weinberg, 

1975).  

Other procedures for estimating change have been suggested and examined (Lord, 1963; 

McNemar, 1958; Tucker, Damarin, & Messick, 1966).  The residual change score (RCS), 

proposed by Manning and DuBois (1962), is one of the most frequently advocated alternatives to 

the simple difference score (Willett, 1994, 1997). The RCS reflects the difference between an 

observed score at Time 2 and a predicted score based on linear regression. Manning and DuBois 

(1962) showed analytically that the RCS typically is more reliable than the simple difference 

score.  However, the RCS is dependent on group level information and is not the actual amount 

of change, but indicates how much different the observed score at Time 2 is from the value that 

is predicted. Consequently, the RCS is appropriate for studying the correlates of change, but not 

for evaluation of individual change (Kim-Kang & Weiss, 2007, 2008).  

Some of the problems in earlier attempts to measure change were due to the use of 

classical test theory (CTT) for developing measuring instruments to be used in measuring 

individual change.  In CTT, tests are usually developed to maximize internal consistency 

reliability, by selecting items with difficulties around p = .50.  This results in tests that measure 

well around the difficulty level of the test, but measure poorly elsewhere; such tests are 

suboptimal for measuring change.  In addition, CTT item statistics – difficulty and 

discrimination – as well as its test scores are dependent on the samples of persons and items on 
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which they are computed. These characteristics also mitigate against the successful measurement 

of individual change.   

In recent years, item response theory (IRT; Embretson & Reise, 2000; Lord, 1980) has 

begun to replace CTT for the development of measuring instruments.  IRT has several 

advantages over CTT for measuring individual change. IRT can place different examinees (or the 

same examinee at different time points) on the same scale when different items are used. 

Similarly, item parameters estimated on a sample of examinees at one trait level can be 

transformed to or linked with those at another trait level, thereby allowing the development of 

item banks that can cover a wide trait range.  Using IRT procedures, tests can be assembled at 

different levels along this trait continuum, thus providing a scale along which change can be 

measured.  

A number of researchers have addressed the issue of measuring change using IRT 

models, including the linear logistic latent trait models (Fischer, 1976), an IRT model for growth 

curves (Bock, 1976), the multidimensional Rasch model for repeated testings (Andersen, 1985), 

and a multidimensional Rasch model for learning and change (Embretson, 1991a, 1991b). The 

model proposed by Embretson is the only IRT model that provides change parameters for 

measuring individual change, but it is restricted to a one-parameter logistic multidimensional 

IRT model that requires the unrealistic assumption of equal discriminations across items. 

Fischer’s linear logistic IRT model estimates group change, Bock’s model requires group level 

information, and Andersen’s approach is designed to assess the relationship between the latent 

trait at two time points and/or changes in the latent trait across time rather than to estimate the 

extent of individual change.   
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A recent book on analyzing change (Collins & Sayer, 2001) addresses contemporary 

developments in the field, with a focus on intraindividual variability.  Although a variety of 

potentially useful approaches for analyzing change data are described, including time series, 

dynamical, and multilevel models, very little attention is focused on the quality of the 

measurements used in the analytic procedures – there is little or no consideration of whether the 

observed measurements actually reflect true change or whether significant change can be 

identified for a given individual.  Thus, a different approach is needed that is designed to 

accurately measure and identify significant individual change when it exists.  

Kim-Kang and Weiss (2007, 2008) combined the modern technologies of  IRT and 

computerized adaptive testing (CAT) in a procedure, originally proposed by Weiss and 

Kingsbury (1984), that they called adaptive measurement of change (AMC). Using Monte Carlo 

simulation, they then compared four procedures for measuring individual change: the simple 

difference score (Burr & Nesselroade, 1990; McDonald, 1999), the RCS, a difference score 

based on IRT, and AMC. Their AMC procedure (described in detail below) better captured 

actual levels of change than did the other methods and was able to efficiently detect true change. 

However, because their goal was not to compare different procedures within AMC, their study of 

this approach was limited to one item selection criterion and one method of hypothesis testing. 

The maximum information criterion of item selection that they used is suitable when the goal is 

to estimate change, but might be improved upon when the goal is a powerful hypothesis test of 

change. Additionally, their approach to detecting change had low power under a number of 

circumstances investigated. Thus, new statistical tests need to be developed and investigated to 

improve AMC’s power to detect significant change. 
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The purpose of this study was to extend the work of Kim-Kang and Weiss (2007, 2008) 

by introducing a new item selection method and adapting two hypothesis testing methods for 

AMC. These item selection and hypothesis testing methods were compared to the original AMC 

procedure in simulation. 

The AMC Procedure 

CAT (van der Linden & Glas, 2000; Wainer, 2000; Weiss, 1983; Weiss & Kingsbury, 

1984), which uses IRT’s capability of placing different examinees (or the same examinee at 

different time points) on the same scale even when different items are used across measurements, 

tailors an instrument to examinees at the individual level, typically selecting the most 

informative items for each examinee based on his/her previous answers. CAT can also determine 

when enough information has accrued and no more items need to be presented to each examinee. 

In this way, measurement can be made both more precise and more efficient, as examinees 

receive items congruent with their latent trait and the test can be ended when a sufficient number 

of items has been given.  

In AMC, there are two (or more) measurements taken: one at Time 1 and the other at 

Time 2. Let 1θ  denote the value of an examinee’s true latent trait at Time 1, and 2θ  the 

corresponding value at Time 2. To determine whether meaningful change has occurred for an 

examinee (e.g., learning, clinical improvement, decline), the practitioner’s goal is to determine 

whether 2θ  is different from 1θ  using hypothesis testing. Since change might occur in either 

direction, a two-sided test is appropriate, with hypotheses 0 1H :  2θ θ=  and 1 1 2H : .θ θ≠  Either 

fixed-length testing or variable-length testing can be employed in the procedure. In the former 

case, the test lengths at the two time points are pre-specified; in the latter case, they are random 
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variables. Hereafter, the test length at Time 1 will be denoted K and the test length at Time 2 will 

be denoted L. 

In order to perform item selection in AMC, candidate items must be designated for 

selection at each time point. There are three possibilities: (1) use two separate item banks, one 

for each time point, with the banks linked onto a common scale; (2) use the same item bank at 

each time point but require for a given examinee that all items administered at Time 1 be 

ineligible for that examinee at Time 2; or (3) use the same item bank at each time point and 

allow all items to be eligible at Time 2 for all examinees. In educational testing, option 3 is often 

inappropriate because students might remember the items from Time 1 to Time 2. However, in 

psychological assessment, it might be perfectly reasonable for an examinee to receive an item at 

both time points. As in Kim-Kang and Weiss (2007, 2008), option 1 or 3 was assumed in this 

study. All hypothesis testing methods examined here are still applicable when option 2 is used.  

Item selection. Most CAT item selection methods require that an interim θ  estimate be 

made following each item response. After  items have been presented, eliciting a response 

vector , a common choice is the maximum likelihood estimate (MLE) of 

k

( 1,...,k u u=u )k θ ; this 

will be denoted ˆ .kθ  CAT usually then selects the item that maximizes the Fisher information at 

ˆ ,kθ  among all items that have not yet been administered to the examinee (e.g., Lord, 1980, p. 

153). When the MLE does not exist, an item is typically selected to maximize the Fisher 

information at an arbitrary value of .θ   

 In AMC, item selection must be conducted for the same examinee at two (or more) 

different time points (and possibly two different levels of the underlying latent trait). For this 

case, Kim-Kang and Weiss (2007, 2008) treated the two time points as distinct measurements 

and estimated θ  separately for each measurement. That is, at Time 1, item  was selected to 1+k
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maximize 1̂( )k
jI ,θ  where 1̂θ

k  denotes the Time 1 MLE after  items and k jI  denotes the 

information function. Similarly, at Time 2, they selected item 1l +  to maximize 2̂( ),l
jI θ  where 

2̂
lθ  is the Time 2 MLE after l items. As a result, responses from Time 1 were not taken into 

account when selecting items at Time 2. The only exception occurred when selecting the first 

item at Time 2; in that situation, Kim-Kang and Weiss maximized Fisher information at the final 

Time 1 MLE. For notational simplicity, the final Time 1 MLE is hereafter denoted 1̂θ  and the 

final Time 2 MLE is denoted 2̂.θ    

Hypothesis testing. Once both the Time 1 and Time 2 measurements have concluded, 

AMC uses a statistical significance test to determine whether change has occurred (that is, 

whether 1 2 ). Kim-Kang and Weiss (2007, 2008) calculated separate confidence intervals for θ θ≠

 and 2 ,1θ θ  then identified significant change based on whether the two confidence intervals 

overlapped. A ( )/2 1
ˆ ˆz SE1 1(1 ) 100%   αα− ×  confidence interval for 1θ  is given by ,θ θ−±  where 

1z /2α  is the appropriate quantile of the standard normal distribution and ( )1̂SE− θ  is the observed 

standard error of measurement evaluated at 1̂,θ  computed by 

 ( ) ( ) 1

1 1̂ ,θˆSE Iθ
−

⎡ ⎤= −  (1) ⎣ ⎦

( )1̂I θ⎡ ⎤
⎣ ⎦where  is observed information obtained from the second derivative of the likelihood 

function. The confidence interval for 2θ  is analogous. Statistically significant change was 

identified if these intervals did not overlap. 

New Methods for AMC 

Item Selection At Time 2  
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The item selection method of Kim-Kang and Weiss (2007, 2008) is a reasonable 

approach for AMC when the goal is estimation. However, in the current application of AMC, the 

power to detect true change might be enhanced by selecting Time 2 items to differentiate 

between 1θ  and 2.θ   This method changes only the item selection criterion at Time 2; at Time 1, 

maximum Fisher information at 1̂θ
k  is still employed. 

The method uses Kullback-Leibler information (KLI; Cover & Thomas, 1991), which 

was first applied to CAT by Chang and Ying (1996). Let θ ′  and θ ′′  be two candidate θ  values 

at the time point of interest (here, Time 2). The KLI of item j  for distinguishing these values is 

equal to  

 
( )
( )

;
( , ) ln ,

;
j

j
j

L u
K E

L uθ

θ
θ θ

θ′

⎡ ⎤′
′ ′′ = ⎢ ⎥

′′⎢ ⎥⎣ ⎦
 (2) 

where [ ]E Xθ ′  denotes the expectation of X  under .θ ′  A large value of ( ,jK )θ θ′ ′′  indicates that 

item j  is useful in differentiating between θ ′  and θ ′′  when θ ′  is the true state of nature. Hence, 

high power in AMC will be achieved if θ ′  is the best estimate of 2θ  under the assumption that 

 is true, and 1H θ ′′  is the best estimate of 2θ  under the assumption that  is true.  0H

 Assume first that change has indeed occurred between Time 1 and Time 2, i.e., that  is 

correct. By this assumption, all responses at Time 1 were elicited from a level of 

1H

θ  that is not the 

true state of nature at Time 2. If no a priori information exists about the anticipated magnitude of 

change between time points, then responses from Time 1 do not convey information about the 

true value of 2.θ  Hence, after l  items, the MLE of 2θ  under  is simply 1H 2̂ ,lθ  assuming that this 

value differs from 1̂ .θ k     
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By contrast, if  is true, then both the Time 1 and Time 2 observations arose from the 

same value of 

0H

.θ  Therefore, the responses from both time points can be combined or “pooled” to 

obtain an overall estimate of this single θ  value. Let K l+u  denote the vector containing all K l+  

observations at the two time points (K items having been administered at Time 1 and l  items 

having been administered thus far at Time 2). Then the MLE under  (i.e., the “pooled MLE” 

or 

0H

ˆK l
poolθ + ) is the value of θ  maximizing 

 ( ;θL K l+u )  (3) ( ) ( ) 

1

1

1 jj
K l uu

j j
j

p pθ θ
+ −

=

⎡ ⎤= −⎣ ⎦∏ ,

where ( )jp θ is the probability of selecting the correct/keyed response under an appropriate IRT 

model. 

  The new item selection method sets 2̂
lθ θ′ =  and ˆ ,K l

poolθ θ +′′ =  i.e., item  at Time 2 is 

chosen to maximize  [See Eggen (1999) for a related application of KLI in the 

context of computerized classification testing.] In the unlikely event that  the 

maximum  criterion cannot be used, since there is no KLI between a value and 

itself. In this case, or if no items have yet been administered at Time 2 (so that  Fisher 

information at 

1l +

ˆ ˆl K
poolθ θ +=

l =

2̂
ˆ( , ).l K l

j poolK θ θ +

)l
pool
+

2 ,l

0),

2̂
ˆ( ,l K

jK θ θ

1̂θ  can be utilized as a substitute item selection method. 

Hypothesis Testing  

 The Z-test. This approach tests the null hypothesis using the standardized difference in 

MLE values. The test statistic is defined as   
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( ) ( )

2 1

1 1

ˆ ˆ| || | ,
1 1

ˆ ˆ
K L

j pool j pool
j j

Z

I I

θ θ

θ θ
= =

−
=

+

∑ ∑

 (4) 

where θ̂ pool  is the pooled estimate after both tests have been completed,  is the sum 

of the Fisher information values at 

(
1

ˆ
K

j pool
j

I θ
=
∑ )

θ̂ pool  for the Time 1 items, and  is the analogous 

quantity for Time 2. In a long test, the inverse of the summed information can be used to 

approximate the variance of the MLE (Chang & Stout, 1993); here, information is evaluated at 

( )ˆ
poolθ

1

L

j
j

I
=
∑

θ̂ pool  because this value is the most plausible θ  level under . By the additivity of variances 

under local independence, the denominator in Equation 4 can be considered the standard error of 

0H

2̂ 1̂θ θ−  under . Moreover, each MLE is asymptotically normal under mild regularity 

conditions (Chang & Stout, 1993), so their difference is also asymptotically normal. The absolute 

value is taken because the alternative hypothesis is two-sided, in order to detect either positive or 

negative change.  

0H

To create a decision rule based on this statistic, let α  denote the desired Type I error rate. 

Let 1 /2z α−  denote the 1 / 2α−  quantile of the standard normal distribution. Statistically 

significant change is then said to have occurred when   1 /2| | α− .Z z≥

The Z-test is similar to the confidence interval decision rule used by Kim-Kang and 

Weiss (2007, 2008) in that both use the standard normal distribution to account for variability. 

The difference is that the confidence interval rule computes the standard error separately for 1̂θ  

and 2̂ ,θ  whereas the Z-test directly calculates the standard error of 2̂ 1̂θ θ−  under .  0H
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The Likelihood-ratio chi-square test. This method is adapted from a method that was 

described by Agresti (1996) for categorical data. Agresti defined the following likelihood-ratio 

statistic:   

 0maximum likelihood when parameters satisfy H .
maximum likelihood when parameters are unrestricted

Λ =  (5) 

In the context of AMC, the condition “parameters satisfy ” is that the latent trait is constant 

between the two time points, i.e., 

0H

1 2.θ θ=  By definition, θ̂ pool  is the value that maximizes the 

likelihood under this condition. The numerator of Equation 5 is thus the likelihood of θ̂ pool  for 

the complete data of both time points. 

In the denominator of Equation 5, the parameters are not constrained to satisfy 1 2.θ θ=  

For this unrestricted case, the likelihood is maximized by computing the MLEs separately at 

each time point, obtaining 1̂θ  and 2̂.θ  Letting Ku  denote the Time 1 response vector and  the 

Time 2 response vector, the denominator of Equation 5 is then the product of the separate 

likelihoods. That is, the maximum unrestricted likelihood is equal to 

Lu

1̂( ;θL Ku ) × 2̂( ;θL Lu ), 

where the two terms are calculated separately. 

 To gauge statistical significance, 2 log( )− Λ  can be compared to the chi-square 

distribution with the appropriate degrees of freedom (Agresti, 1996). In AMC, the alternative 

hypothesis includes two θ  values (one for each time point) whereas the null hypothesis includes 

only one such value; therefore, the associated significance test has one degree of freedom. The 

null hypothesis is rejected if and only if 2
1 ,2 log( ) αχ −≥− Λ  where 2

1 αχ −  is the 1 α−  quantile of the 

chi-square distribution with one degree of freedom. Like the Z-test, the likelihood-ratio chi-
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square test directly takes the null hypothesis into account (through the numerator of  and is 

thus tailored to the hypothesis testing paradigm. 

)Λ

 Extension to Variable-Length Testing 

 Variable-length testing can be more efficient in AMC than fixed-length tests. In 

particular, when examinees or patients have made substantial improvement (or decline) since the 

previous time point, significant change might be observed after a small number of test items 

(Kim-Kang & Weiss, 2007, 2008). The following considers early stopping only for the Time 2 

assessment; it is assumed that the Time 1 assessment has already ended, and a determination of 

“change” or “no change” is sought for Time 2.  

The Z-test. A simple stopping rule for this test would be to apply the final rejection region 

to all stages—that is, to cease test administration the first time that  If this occurs at 

any stage of the test (including the final stage,  the null hypothesis would be rejected; on the 

other hand, if  for all stages, the null hypothesis would not be rejected. This 

procedure would be likely to lower the average test length (ATL) at Time 2, but also to raise the 

Type I error rate: by providing more opportunities for the null hypothesis to be rejected, the 

proportion of rejections should be expected to increase even when the null is actually true. 

Therefore, this method should not be used if strict adherence to the 

1 /2| | .Z z α−≥

),L

1 /2| |Z z α−< L

α  level is desired. 

 To avoid such inflation of the α  level, the nominal critical value,  should be 

raised. That is, for each interim stage, the null should be rejected if and only if | |

1 /2 ,z α−

1,Z C≥

2 ,

 where 

 At the final stage (i.e., the stage at which the maximum possible test length is 

reached, and the test is forced to terminate), the null is rejected if and only if 

1 1 /2.C z α−>

| |Z C≥  where 
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2 1 /2.C z α−>  Similar types of sequential decision rules have been used by Bartroff, Finkelman, 

and Lai (2008), Lai and Shih (2004), and Siegmund (1985) in other applications. 

 To satisfy the desired Type I error rate,  and  should be defined so that the rejection 

rate never exceeds 

1C 2C

α  for any 1 2.θ θ=  There are many possible values that satisfy this condition; 

Lai and Shih (2004) recommended that between one-third and one-half of the Type I error be 

“spent” on the interim stages, and the remainder be spent on the final stage. In other words, when 

the null hypothesis is true, the probability of stopping early to reject the null should be equal to 

,εα  where 1/ 3 / 2.1ε≤ ≤  The probability of not rejecting the null at any interim stage, but 

rejecting it at the final stage, should then be equal to (1 )ε α−  in order to achieve an overall Type 

I error of .α  The values of  and  that satisfy these additional conditions can be determined 

through simulation. 

1 2CC

The likelihood ratio statistic. For the likelihood-ratio chi-square test, the null hypothesis 

is rejected during interim stages if  at the final stage, the null is rejected if 

 As with the Z-test,  and  are selected so that when no true change has 

occurred, the probability of rejecting the null at an interim stage is 

12 log( ) ;D− Λ ≥

1D 2D2.D≥2log( )− Λ

εα  and the probability of 

rejection at the final stage is (1 ) .ε α−   

 These variable-length testing procedures never stop early to make a determination of “no 

change;” they stop early only to reject the null hypothesis. This seeming disparity makes sense 

when considering that at stage l  of Time 2, early stopping should be invoked only if there is 

substantial evidence in favor of one hypothesis over the other. Although there might be strong 

evidence that change has occurred (e.g., if 2̂
l

1̂θ θ>>  and both estimators are precise), it is more 

difficult to be confident that change has not occurred: even if 1̂θ  and 2̂
lθ  are very close to each 
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other, there is usually some small estimated change between the time points. Thus, an early 

stopping rule to determine “no change” was not examined.   

Method 

Item selection methods and hypothesis tests were compared in two simulation sets. In 

both simulation sets, the item selection method for Time 1 was always Fisher information (FI) at 

1̂ ;θ k  Time 2 item selection was conducted using both FI at 2̂
lθ  and KLI between 2̂

lθ  and ˆK l
poolθ + . 

The item selection methods were completely crossed with the three hypothesis tests—confidence 

interval overlap test (CI), likelihood-ratio test (LR), and Z-test (Z)—for a total of six procedures: 

FI-CI, FI-LR, FI-Z, KL-CI, KL-LR, and KL-Z. These combinations of methods were compared 

based on their statistical power and Type I error rates.  

 In each simulation set, the “no change” condition was studied at values of 1 2θ θ=  ranging 

from −2 to 2, incremented by 0.5. Power was studied at three levels of improvement (true change 

of θ = 0.5, 1.0, and 1.5), with the latent traits again ranging from −2 to 2. All combinations of 1θ  

and 2θ  considered are indicated in Table 1, where “N” = no change, “L” = low change (0.5), 

“M” = medium change (1.0), and “H” = high change (1.5). 1,000 replications were performed for 

every combination of 1θ  and 2θ  and both item selection methods; the three hypothesis tests were 

then applied to each set of 1,000 simulees.   

---------------------------------------------------------------------------- 

Insert Table 1 about here 

----------------------------------------------------------------------------- 

As in Kim-Kang and Weiss (2007, 2008), item selection methods were compared in their 

unconstrained form. Therefore, exposure control (e.g., Chang, Qian, & Ying, 2001; Stocking & 

Lewis, 1998; Sympson & Hetter, 1985) and content balance (e.g., Kingsbury& Zara, 1989; van 
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der Linden, 2000) were not applied, and item eligibility rules for the two time points were 

defined by option 3 above.  

The item bank for Simulation Set 1 was the relatively ideal CAT item bank used in the 

“medium discrimination” condition of Kim-Kang and Weiss (2007, 2008). It consisted of 288 

simulated items. The  (discrimination) parameters of the 3-parameter logistic model (Lord, 

1980, p. 12) were simulated from the normal distribution with a mean of 1 and a standard 

deviation (SD) of 0.15. The  (location) parameters were simulated so that a specified number 

would fall into each of 18 intervals ranging from [−4.5, −4.0] to [4.0, 4.5]. In particular, 24 items 

were located in each of the six middle intervals ([−1.5, −1.0] to [1.0, 1.5]) and 12 items were 

located in each of the outer intervals ([−4.5, −4.0] to [−2.0, −1.5] and [1.5, 2.0] to [4.0, 4.5]). 

Within each interval, the  parameter was simulated from the uniform distribution. This 

procedure created an adequate number of items in the middle of the 

ja

jb

jb

θ  distribution; it also 

ensured coverage beyond the range of the true θ  values under study (−2 to 2). Finally,  (the 

pseudo-guessing parameter) was set at 0.20 for all 288 items (Lord & Novick, 1968; Yen, 1986). 

Simulees were administered 50 items at each time point in Simulation Set 1. 

jc

Simulation Set 2 used a more realistic bank of 455 items from a statewide English 

Language Arts examination of Grade 10 students. The four-option multiple-choice items tested 

the students’ level of reading comprehension.  The mean and SD of  values across the bank 

were 1.02 and 0.34, respectively; 0.02 and 0.78 for ; and 0.22 and 0.06 for . Figure 1 shows 

the information functions of the two item banks. To evaluate the different AMC procedures 

under a shorter test length, simulees were administered only 30 items at each time point in 

ja

jb jc
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Simulation Set 2. At each time point and for each simulation set, the MLE was bounded in the 

range [−4, 4]. 

---------------------------------------------------------------------------- 

Insert Figure 1 about here 
----------------------------------------------------------------------------- 

Results 

Fixed-Length Tests  

 Simulation set 1.  Results of Simulation Set 1 are presented in Figure 2. Figure 2a 

displays the Type I error rate of all six procedures, plotted against the true value of 1 2 ,θ θ=  

under the “no change” condition. Figures 2b–2d plot the statistical power of these procedures 

against 1θ  under true change values of θ  = 0.5, 1.0, and 1.5, respectively. 

---------------------------------------------------------------------------- 

Insert Figure 2 about here 
----------------------------------------------------------------------------- 

The most salient feature of Figure 2 involves the two procedures using the confidence 

interval overlap hypothesis test, namely FI-CI and KL-CI. Although the desired Type I error rate 

was 0.05,α =  the observed Type I error rate of these procedures never reached 0.01 for any 

level of the latent trait (Figure 2a). Having a Type I error rate far below the intended value is not 

problematic in itself, but it indicates the conservative nature of the CI overlap test, which 

resulted in low power for the FI-CI and KL-CI methods at true change values of 0.5 and 1.0 

(Figures 2b and 2c). On the other hand, the four procedures using the LR test or Z-test generally 

exhibited Type I error rates between 0.04 and 0.06, close to the desired value of 0.05.α =  The 

power functions of these procedures considerably surpassed those of FI-CI and KL-CI for true 

change values 0.5 and 1.0, with gains ranging from 0.16 to 0.29. At the true change value of 1.5, 

the power of all methods was approximately 1 (Figure 2d). 



Adaptive Measurement of Change  -- 18 

Although the performance of the new procedures (FI-LR, FI-Z, KL-LR, and KL-Z) was 

relatively similar, some differences were notable. FI-LR and KL-LR tended to exhibit the highest 

power, but also the highest Type I error rates. In particular, FI-LR had the highest Type I error 

rate for seven of nine θ  levels; KL-LR had the highest or second highest Type I error rate at six 

of nine θ  levels. KL-Z tended to maintain the desired Type I error rate, exceeding 0.05 for only 

two of nine θ  levels in the “no change” condition (as opposed to five or six for the other 

methods). Among these four procedures, KL-Z had the lowest Type I error rate for six of nine θ  

levels, yet in most “positive change” conditions displayed more power than FI-Z and power 

within 1% of FI-LR and KL-LR. Thus, although no procedure uniformly outperformed the 

others, KL-Z tended to exhibit the best overall classification properties, albeit by a slight margin.      

Simulation set 2. Figure 3 presents the results for Simulation Set 2. As in Simulation Set 

1, FI-CI and KL-CI had Type I error rates far below 0.05 (Figure 3a). This again resulted in low 

power for these methods, particularly with change of 0.5 (Figure 3b). The other four procedures 

all displayed far greater power than FI-CI and KL-CI; they also exhibited slight inflation of the 

Type I error rate, though this rate exceeded 0.07 on just two occasions. KL-Z had a relatively 

high Type I error rate at extreme values, such as 1 2 2,θ θ= = ±  but it was the only method in 

addition to FI-CI and KL-CI to maintain the desired Type I error rate at more than one θ  level, 

doing so four times. Discounting the CI methods for lack of power, KL-Z had the lowest Type I 

error rate at five of nine θ  levels and also exhibited competitive power. Thus, the findings were 

similar to Simulation Set 1: no method uniformly outperformed its competitors, but KL-Z had 

the best balance of Type I error and power. 

---------------------------------------------------------------------------- 

Insert Figure 3 about here 
----------------------------------------------------------------------------- 
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 A comparison of Simulation Sets 1 and 2 indicates the effect of the item bank on the 

classification properties of AMC. Even with a test of 20 fewer items, Simulation Set 2 displayed 

enhanced power in the low-to-middle portion of the θ  continuum due to the greater information 

in that region. However, the item bank of Simulation Set 1 had more items located at the 

extremes of the continuum (Figure 1) with consequent better power there.  

Finally, at a positive change of 0.5, the power never exceeded 0.422 in Simulation Set 1 

or 0.534 in Simulation Set 2. Kim-Kang and Weiss (2007, 2008) illustrated the effectiveness of 

AMC relative to non-adaptive methods for measuring change, so these somewhat low power 

values do not represent a lack of efficiency in AMC. Rather, they reflect the inherent difficulty of 

comparing two performances that are both measured with error, whether done adaptively or 

using a linear test.       

Variable-Length Tests 

 For brevity, only one simulation set and one AMC procedure were examined to compare 

the efficiency of variable-length and fixed-length CATs at Time 2. Simulation Set 1 was used 

because its 50-item fixed-length tests (FLT) allowed for greater potential savings in test length. 

KL-Z was used because this procedure had performed well in the fixed-length study. 

 The variable-length test (VLT) administered a uniform 50 items at Time 1, but allowed 

for different stopping times to occur at Time 2. For face validity, as well as to avoid early 

stopping based on an unstable θ  estimate, a minimum test length of 20 was set for Time 2. The 

maximum test length was set at 50 so that the VLT was never longer than the FLT. Preliminary 

simulations indicated that  and 1 2.67C = 2 2.07C =  were appropriate critical values for the VLT. 

Type I error rates and power functions are presented in Figure 4. As  and  had been 

specifically selected to achieve a Type I error rate of 

1C 2C

0.05α =  or lower, the VLT’s observed α  
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level never exceeded this desired threshold (Figure 4a). On the other hand, the critical value for 

the FLT, 1.96, was obtained from the normal approximation; hence, although the FLT’s 

observed α  level was always close to 0.05, it sometimes exceeded this value. Because the FLT’s 

observed α  level was higher than that of the VLT for every “no change” condition studied, its 

power would be expected to be higher. This expectation was borne out in the results: the FLT 

had greater power ranging from 1.3% to 4.4% at a positive change of 0.5, from 0.8% to 2.5% at a 

positive change of 1.0, and 0.0% to 0.1% at a positive change of 1.5 (Figures 4b–4d). Note, 

however, that the VLT’s classification properties reported above (better Type I error and slightly 

lower power than the FLT) were partially an artifact of the chosen  and  In particular, 

lowering the critical values  and  would lead to more rejections of H  The power of the 

VLT would thereby be increased—at the expense of the Type I error rate—thus making the 

classification properties of the VLT and FLT more similar to each other. Conversely, raising the 

FLT’s critical value above 1.96 would lead to fewer rejections of  thereby reducing both the 

power and Type I error rate and resulting in classification properties more similar to those of the 

VLT.  

1C

0H ,

2.C

0.1C 2C

---------------------------------------------------------------------------- 

Insert Figure 4 about here 
----------------------------------------------------------------------------- 

Table 2 shows the mean and SD of the number of fewer items administered by the VLT 

than by the FLT for the three change conditions and the no change condition. Results for the no 

change condition are shown as a baseline since they represent only Type I error.  For the change 

conditions, mean reductions ranged from 3.70 to 6.55, 19.04 to 21.41, and 28.58 to 29.02 items 

for change values of 0.5, 1.0, and 1.5, respectively. Thus, the VLT exhibited moderate reductions 

in the average test length with change of 0.5, and substantial reductions at 1.0 and 1.5. Because 
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the number of items saved by the VLT is clearly dependent upon the length of the FLT, it is 

important to also consider the gain in efficiency as a percentage. The mean percentage of items 

saved ranged from 10% under positive change of 0.5, to 40% under positive change of 1.0, and 

to over 50% under positive change of 1.5. 

---------------------------------------------------------------------------- 

Insert Table 2 about here 
----------------------------------------------------------------------------- 

Table 2 shows that the SD of the number of items saved was small (below 5) under 

change of 1.5. This finding was due to a “floor” effect, whereby the test lengths tended to cluster 

around the minimum test length. On the other hand, there was substantial variability in item 

reductions when the assumed change value was 0.5 or 1.0 (SDs exceeding 9 in all cases). As 

anticipated, the ratio of the mean savings to the SD of savings increased as the level of true 

change increased. 

 Discussion and Conclusions 

 The objective of this study was to further investigate the capability of the AMC method 

to detect significant change by (1) introducing a new item selection criterion, (2) implementing 

two hypothesis testing methods, and (3) exploring the use of variable-length testing in this 

context. The simulation results using fixed-length tests supported the greater efficiency of the 

new procedures over existing methods. Both the Z-test and LR test exhibited much higher power 

to detect change than the method based on overlapping confidence intervals. The difference in 

performance among item selection methods was more subtle, but using Kullback-Leibler 

information at Time 2 resulted in a slight advantage over the use of Fisher information. Overall, 

the combination of Kullback-Leibler item selection and the Z-test displayed a good balance of 

Type I error and power in both simulation sets. With variable-length testing at Time 2, this 
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combination was found to yield substantial reductions in average test length as compared to 

fixed-length AMC in the detection of significant change.  

This research used Monte Carlo simulation methods.  Any Monte Carlo simulation can be 

questioned with respect to whether its assumptions are realistic.  In this research, the primary 

assumptions were the nature of the item banks used and the magnitudes of change examined.   

Two item banks were used.  Bank 1 was an “ideal” CAT item bank with item difficulties 

well-distributed throughout the θ  range and moderately discriminating items. Bank 2 came from 

an operational item bank.  Results showed that the power of the ideal bank was more constant 

across the θ  distribution than that of the operational bank. The operational bank displayed less 

power at the extremes of the continuum but more power in the low-to-middle portion of the θ  

range. Thus, these simulations confirmed the anticipated result that the characteristics of the item 

bank are an important factor in the quality of AMC, as they are in any CAT application. 

Three magnitudes of individual change were simulated in this study: θ  = 0.5, 1.0, and 

1.5. Justification for choice of these change values is difficult because there is little individual 

change data available in the IRT metric. However, change data in a classical number- or percent-

correct metric can approximate the IRT standard score metric. Table 3 shows alternate forms 

retest data for students in three grades from schools in the U.S. Because the focus of this research 

was on individual change (rather than group change), change was computed as the simple 

difference score for each student of their Time 2 (Form B) percent correct score test minus their 

Time 1 (Form A) percent correct score.  The mean change score was then divided by the Time 1 

SD to express the average change on a z-score scale (i.e., change was expressed in Time 1 SD 

units, as was done in the simulation).  In addition, the maximum observed percent change score 

was divided by the Time 1 score SD, to express maximum observed change in Time 1 SD units. 
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---------------------------------------------------------------------------- 

Insert Table 3 about here 
----------------------------------------------------------------------------- 

Table 3 shows a range of mean individual change from 1.406 SD units to 0.001 SD units 

across the eight data sets. The five largest means of 1.406, 1.339, 0.807, 0.773, and 0.590 support 

the use of all three simulated change levels used in this study.   Note that approximately half the 

observed individual change values in these data were higher than the deviated means shown in 

Table 3.  The maximum individual deviated change ranged from a low of 1.67 to a high of 5.00, 

with all but the first above 2.5 SD units.  For two groups—Reading, grades 4 and 5—mean 

deviated change was about zero, indicating no change on average in these data.  However, there 

were obviously individual students with substantial amounts of change.  Because the AMC 

procedure is concerned with identifying individual change, the observed maximum levels of 

deviated change shown in Table 3 readily support the levels of individual change used in these 

simulations.   

The procedures introduced herein were designed to enhance the advantages of AMC over 

non-adaptive methods to detect and measure change. Future studies of AMC should investigate 

its power under different conditions, including varying the item pool characteristics, test lengths, 

and magnitudes of change. In particular, higher levels of item discrimination should be examined 

since increased discrimination should decrease standard errors, thus enabling more efficient 

identification of significant change with variable-length AMC. Many more extensions of AMC 

research are needed, including: 

1. Comparison of item selection procedures at the first time point. For instance, 

Fisher information might be compared with the original Chang and Ying (1996) 

version of Kullback-Leibler information. 
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2. Further study of variable-length testing, e.g., allowing for variable length at the 

first time point, stopping early when significant change has not occurred, and 

using different minimum test lengths. 

3. Detection of change at more than two time points.  

4. Application of AMC to measurement with polytomous models (e.g., Muraki, 

1992; Samejima, 1969), which are often used in psychological assessments. 

5. Item selection incorporating exposure control, content balance, and constraints 

preventing an examinee from being administered the same item at more than one 

time point. Such considerations are typically more important in educational 

assessment than psychological assessment. 

The above list illustrates that AMC is a fertile area of research. It is also an inherently 

challenging area due to the fact that measurement at every time point is made with error. The 

statistical power of AMC (and any other method for detecting change) is likely adversely 

affected by these multiple sources of error. Nevertheless, the tracking of progress, lack of 

progress, and decline in students, patients, and other applied areas of psychology is an important 

application of psychometrics that merits further study. The resulting indicators that significant 

change has or has not occurred can inform treatment decisions, educational interventions, and 

other applied decisions. The AMC paradigm provides a solution that is not available using 

conventional fixed-form tests.  
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Table 1. Combinations of 1θ  and 2θ  Studied in Each Simulation Set 

Time 2 (θ 2)  Time 1 
 (θ 1) −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 
−2.0 N L M H --  --  --  --  --  
−1.5  -- N L M H --  --  --  --  
−1.0 --  -- N L M H --  --  --  
−0.5 --  --  --  N L M H --  --  
  0.0 --  --  --   -- N L M H --  
  0.5 --  --  --  --  --  N L M H 
  1.0 --  --  --  --  --   -- N L M 
  1.5 --  --  --  --  --  --  --  N L 
 2.0 --  --  --  --  --  --  --  --  N 

 

 

 

 

Table 2 
Number of Items Saved in Variable-Length Testing Using KL-Z 

 Time 1 θ  
Change 

Condition  −2.0 −1.5 1.0 −0.5 0.0 0.5 1.0 1.5 2.0 
No Change 

Mean 
    SD 

 
0.43 
3.26 

 
  0.49 
  3.55 

 
  0.59 

3.82 

 
  0.50 

3.53 

 
  0.48 

3.42 

 
  0.61 

4.02 

 
  0.63 

4.01 

 
  0.60 

3.92 

 
  0.36 

3.06 
θ  = 0.5 

Mean 
SD 

 
3.70 
9.09 

 
  4.77 
10.00 

 
  6.55 
11.39 

 
  4.69 
  9.84 

 
  4.93 
10.07 

 
5.53 

10.49 

 
 5.35 
10.59 

 
 5.43 
10.78 

 
-- 

θ  = 1.0 
Mean 
SD 

 
19.04 
12.71 

 
 20.01 
12.21 

 
 21.06 
11.85 

 
 20.54 
12.01 

 
20.78 
12.00 

 
20.08 
12.12 

 
21.41 
11.94 

 
-- 
 

 
-- 

θ  = 1.5 
Mean 
SD 

 
28.58 
  4.74 

 
28.97 

4.22 

 
28.78 

4.71 

 
28.87 

4.17 

 
29.02 

3.97 

 
29.00 
  3.81 

 
-- 

 
-- 

 
-- 
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Table 3.  Mean and SD of Time 1 (Form A) Achievement Test Percent Correct Scores, 
Mean and SD of Individual Change Scores (Form B minus Form A),  

and Mean and Maximum of Individual Change Scores Expressed in Time 1 SD Units 
 (Tests Ranged From 40 to 50 Items With Retest Over an Approximately 4.5-Month Interval) 

    
Time 1 

 
Change 

Change in Time 1 
SD Units 

Subject Grade N Mean SD Mean SD Mean Maximum
Math 3 268 42.47 13.21 18.57 13.30 1.406 4.39 
Science  3 192 40.96 16.01 21.44 15.57 1.339 4.16 
Math 4 177 42.99 15.27 12.32 11.54 0.807 3.27 
Reading  4 176 57.32 19.14  -1.99 11.72 -0.104 1.67 
Math 5 182 49.18 17.40 10.27 12.74 0.590 3.79 
Reading  5 179 55.94 18.32   0.24   5.74 0.001 5.00 
Science 5 179 50.65 16.90   5.32 13.22 0.315 2.77 
Social Studies 5 178 46.58 16.25 12.56 10.66 0.773 2.83 
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Figure 1. Fisher Information Function of Each Item Bank  
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Figure 2. Type I Error Rates and Power Functions, Simulation Set 1    
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Figure 2c 
True Change of 1.0 

 
Figure 2d 
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Figure 3. Type I Error Rates and Power Functions, Simulation Set 2    
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Figure 3c 

True Change of 1.0 

 
Figure 3d 
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Figure 4: Type I Error Rates and Power Functions for 
Fixed-Length and Variable-Length Tests Using KL-Z    
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Figure 4c 
True Change of 1.0 
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