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CHAPTER 2

A Brief lntroduction To Computerized Testing

2.1 Introduction

A psychological test is defined by the manner in which items are selected

for presentation and by the method used to compute a score from an exami-
nee's responses to those items. The way items are chosen is called the item-
selection strategy, and the way scores are computed from item responses is
called the scoring method.

There are two major kinds of testing strategies: conventional and adaptive.
A conventional test is constructed by selecting a fixed set of items for admin-
istration to a group of individuals. A conventional test is typically scored

by counting the number of items that are answered correctly. Such tests are
simple to design and score, but they are not particularly efficient because
the same set of items is administered to everyone regardless of ability. For
any particular individual, many of the items may be much too easy or much
too hard, providing little information for pinpointing that person's standing
with regard to others of similar ability. Tests of this type are inefficient in
their use of administration time and in the number of items needed to
provide an accurate estimate of each examinee's ability.

Adaptive teJtr, on the other hand, are efficient even for a group of individ-
uals differing widely in ability. Adaptive tests are based on a simple
concept: more information can be obtained from a test item if the item is
matched to the ability level of the examinee. To discriminate among low-
ability examinees, relatively easier items should be administered; to discrim-
inate among high-ability examinees, relatively more difficult items should
be administered. Practical complications of adaptive testing arise from two
sources: l) an examinee's ability level must be known in advance in order
tO choose the most appropriate items, and 2) when everyone answers a

different set of items, the test cannot be scored by simply counting the
number answered correctlY.

Another type of testing strategy supported by the system is the individual'
ized domain-referenced test. In domain-referenced testing, items are

randomly sampled from domains and performance on the items is assumed

to be representative of the performance that would be observed if all of the
items in the domain were administered. Most domain-referenced tests are

constructed by sampling items from the domain, constructing a conventional
test using these items, and administering the test to individuals. The
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MicroCAT Testing System supports this kind of testing procedure with the
Conventional Test Building Program in its Conventional Testing Subsystem.
The system also allows you to administer individualized domain-referenced
tests. In these tests, subsets of items are randomly selected and administered
at the time of testing and each individual responds to a different subset.
Because each test is different (subject to any limitations imposed by the size
of the item pool), the test is not a standard conventional one. Because the
test is not tailored to the ability or some other characteristic of the exami-
nee, it is not really an adaptive test either, as defined above.

Another testing strategy supported by the system is fixed-branching simula-
tion. In this type of testing strategy, the items administered are dependent
upon one or more earlier responses by the examinee. It is not an adaptive
testing strategy, as defined above, because branching is not necessarily
dependent upon the correctness or incorrectness of the examinee's
response(s). For example, a fixed-branching simulation of managerial effec-
tiveness might present a situation to the examinee and ask the examinee to
choose an appropriate action. The next item presented would depend on the
action chosen, and the situation presented in it would reflect the effects of
the action.

The MicroCAT Testing System supports and facilitates all of these testing
strategies. Because adaptive testing is less familiar to many practitioners
than the other testing strategies, the remainder of this chapter will describe
adaptive testing in more detail. A bibliography at the end of the chapter
suggests additional sources for information.

2.2 Intuitively Branched Adaptive Strategies

The solution to the first problem of adaptive testing (selecting items without
knowing an examinee's ability level) has been approached intuitively from
several directions. The simplest solution is to create a hierarchy of subtests.
Scores frorn one test are used to estimate the examinee's ability level, and
then subsequent tests are selected on the basis of the score on the first one.
One of the earliest of these hierarchical strategies is the two-stage test
(Angoff & Huddleston, 1958; Betz & Weiss, 1973, 1974; Lord, 1980; Weiss,
1974) in which all examinees first respond to a common routing test. The
score on that test is then used to assign each examinee to a second-stage
measurement test. Responses to both tests are used to arrive at a final score.
A problem with the two-stage strategy is that errors in measurement on the
first-stage test result in misrouting to an inappropriate measurement test at
the second stage.

The problem of misrouting in the first stage led to the development of
multistage tests in which a common routing test leads to two or more
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second-stage routing tests which, in turn, lead to multiple third-stage
measurement tests. The addition of extra routing tests reaches its logical
limit when only one item remains in each subtest. The most popular exam-
ple of this limiting case is called the pyramidal test (Bayroff, Thomas, &
Anderson, 1960; Larkin & Weiss, 1974; Lord, 1970; Weiss, 1974). In a pyra-
midal test, everyone starts with the same item and then branches either to
an easier item after each incorrect response or to a more difficult item after
each correct response. A diagram of a pyramidal test is shown in Figure
2-t.

Figure 2-1. Diagram of a Pyramidal Test
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As the number of items at each stage of testing increases, the pyramidal
structure begins to make very inefficient use of its items. While a l5-item
two-stage test might require 45 items, a l5-item pyramidal test requires 120.

This problem led to the development of re-entrant strategies in which a

subtest containing a given set of items could be partially administered,
exited for a subtest at another level, and then returned to if necessary. The
best example of this type of strategy is the stradaptive lesl (Vale & Weiss,

1975a, 1975b, 1978; Weiss, 1973) in which several (for example, nine)
subtests (or strata) are defined, each containing items at a specified diffi-
culty level. In this strategy, testing proceeds by administering an item in
one stratum and then branching to a more difficult stratum if the item is
answered correctly or to a less difficult stratum if it is answered incor-
rectly. Whenever testing branches to a stratum, the next previously unad-
miniitered item in that stratum is administered to the examinee. A diagram
of the structure for a five-stratum (A-E) stradaptive test is shown in Figure

ItemOl0



MicroCAT lJser's Manual
MicroCAT Testing System (Version 2.0)
Page 14

Several such mechanical branching mechanisms were evaluated over the
years, but no strategy had a clear psychometric advantage over all of the
others. However, solutions to the second practical problem in adaptive test-
ing (test scoring) have produced some superior strategies. While a few of
the intuitively branched strategies described above could be scored in simple
and meaningful ways, many could not. The general solution to both the
item-selection and the test-scoring problems lay in item response theory.

Figure 2-2. Diagram of
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2.3 Statistically Branched Adaptive Strategies

2.3.1 ltem Response Theory Models

Item response theory (IRT) is a statistical theory consisting of a family of
models that express the probability of observing a particular response to an
item as a function of certain characteristics of the item and of the ability
level of the examinee (Hambleton & Swaminathan, 1985). IRT models have
several forms depending on the format of the item response options and the
simplifying assumptions made regarding the process underlying the response.

The model that has been used most widely in computerized adaptive testing
(CAT) is the three-parameter logistic model. This model is appticable to
multiple-choice questions scored in a dichotomous (for example, correct-
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incorrect) manner. It describes the probability of observing a correct
response to an item as a function of the examinee's ability level (called

theta) and three item parameters (4, b, and c). The a parameter represents

the item's capability of discriminating between levels of ability. It corre-
sponds to the rate at which the probability of a correct response to an item
.hattges as a function of the ability level of the examinee. The b parameter

is an index of the item's difficulty. When it is not possible to answer the

item correctly by randomly guessing, b represents the level of ability at

which the examinee has a fifty-f if ty chance of answering the item
correctly. When it is possible to guess the correct answer, b represents the

level of ability at which the probability of a correct answer (p) is halfway
between 1.0 and the probability of answering the item correctly by
randomly guessing. Thus, for a five-alternative multiple-choice item, b is
the abiliiy level corresponding to p = 0.625. For a four-alternative item, b is
the ability level at which P = 0.600. The c parameter is equal to the proba-

bility that an examinee of extremely low ability can answer the item
corrictly - or, in other words, that the item can be answered correctly by

random guessing. It is therefore referred to as the guessing parameter. If
an item cannot be guessed correctly, c = 0.0.

For any test item, an item characteristic curve or item response function
(IRF) can be drawn which is mathematically described by the item's param-
eters. Two examples of three-parameter IRFs are shown in Figure 2-3' The
vertical axis represents the probability of a correct response; the horizontal
axis represents theta, the examinee's ability level. Thus, an item's IRF illus-
trates the probability of getting the item correct as a function of an exami-
nee's ability level. The shape of the IRF depends upon the item's parame-
ters.

The IRF drawn with the solid line in Figure 2-3 represents an item with a =
1.0, b = 0.0, and c = 0.2. The slope of the curve is related to the item's a
(discrimination) parameter. Higher values of a would make the IRF steeper.

At theta levels where the IRF is steeper, the item's capability of discrimi-
nating among examinees with ability levels near that level of theta is

increased. The location of the curve along the horizontal axis is a function
of the b (difficulty) parameter. Higher values of b shift the curve to the
right; lower values shift the curve to the left. The lower left asymptote of
the IRF corresponds to the item's c (guessing) parameter. Higher values of c

raise the asymptote, indicating an increased probability of correct answers

for examinees with very low ability levels. In Figure 2-3, the IRF drawn
with a dashed line represents an item with a = 2.0, b = 1.0, and c = 0.2. The
lower asymptote remains at 0.2. Note, however, that the higher value of b

has shifted the midpoint of the curve to a theta level of 1.0. Because a is
also larger, the IRF for this item is steeper than the IRF for the item with
a = 1.0.
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Figure 2-3. Two Three-Parameter Item Response Functions
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The three-parameter model can be considered a general model for dichoto-
mously scored items. It allows items to differ in their discriminating
powers, in their difficulties, and in how easily they can be answered
correctly by guessing. However, this general form requires much computa-
tion to estimate the three parameters as well as substantial computation to
obtain scores. If items can be assumed not to vary on all of these character-
istics, computational savings can be obtained by setting some of the parame-
ters to constant values.

The guessing parameter, c, causes the most computational difficulty and can
be set to 0.0 if the items cannot be answered correctly by guessing. Recall-
type items that do not provide an opportunity for guessing can be used with
this reduced model. The model with c assumed to be 0.0 is called the two-
parameter model.

The discrimination parameter, a, can also be set to a constant if it is
reasonable to assume that all items are equally good at discriminating high
abilities from low abilities. The one-parameter model is usually referred to
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incorrect) manner. It describes the probability of observing a correct
response to an item as a function of the examinee's ability level (called

theta) and three item parameters (4, b, and c). The a parameter represents

the item's capability of discriminating between levels of ability' It corre-
sponds to the rate at which the probability of a correct response to an item
.iuttg.r as a function of the ability level of the examinee. The b parameter

is an index of the item's difficulty. When it is not possible to answer the

item correctly by randomly guessing, b represents the level of ability at

which the examinee has a fifty-f if ty chance of answering the item
correctly. When it is possible to guess the correct answer, b represents the

level of ability at which the probability of a correct answer (p) is halfway
between 1.0 and the probability of answering the item correctly by

randomly guessing. Thus, for a five-alternative multiple-choice item, b is
the abilily level corresponding to p = a.625. For a four-alternative item, b is
the ability level at which P = 0.600. The c parameter is equal to the proba-

bility that an examinee of extremely low ability can answer the item
corrictly - or, in other words, that the item can be answered correctly by
random guessing. It is therefore referred to as the guessing parameter. If
an item cannot be guessed correctly, c = 0.0.

For any test item, an item characteristic curve or item response function
(IRF) can be drawn which is mathematically described by the item's param-

eters. Two examples of three-parameter IRFs are shown in Figure 2-3. The
vertical axis represents the probability of a correct response; the horizontal
axis represents theta, the examinee's ability level. Thus, an item's IRF illus-
trates the probability of getting the item correct as a function of an exami-
nee's ability level. The shape of the IRF depends upon the item's parame-
ters.

The IRF drawn with the solid line in Figure 2-3 represents an item with a =
l.O, b = 0.0, and c = 0.2. The slope of the curve is related to the item's c
(discrimination) parameter. Higher values of a would make the IRF steeper.

it tt.ta levels where the IRF is steeper, the item's capability of discrimi-
nating among examinees with ability levels near that level of theta is
increased. The location of the curve along the horizontal axis is a function
of the b (difficulty) parameter. Higher values of D shift the curve to the
right; lower values shift the curve to the left. The lower left asymptote of
the IRF corresponds to the item's c (guessing) parameter. Higher values of c

raise the asymptote, indicating an increased probability of correct answers

for examinees with very low ability levels. In Figure 2-3' the IRF drawn
witha dashed line represents an itemwith a=2.0, b= l.0,andc =0.2. The
lower asymptote remains at 0.2. Note, however, that the higher value of b

has shifted the midpoint of the curve to a theta level of 1.0. Because a is
also larger, the IRF for this item is steeper than the IRF for the item with
a = 1.0.
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as the Rasch model (Rasch 1980; Wright & Stone, 1979), named after its
developer.

While the three-parameter logistic IRT model is appropriate only for
dichotomously scored items, other IRT models are available for use with
other response formats (for example, Bock, 1972; Samejima, 1969). Poly-
chotomous models, for instance, are appropriate where multiple response
categories are scored on each item. One example of this situation is a

multiple-choice item in which the incorrect alternatives are weighted as a
function of how "incorrect" they are. Another example is an interest-test
item with ordered Like, Indifferent, and Dislike responses. Still another is
a performance-rating scale on which performance is rated in ordered cate-
gories.

IRT models generally assume one of two shapes for the IRF. Most models
assume that the response probabilities follow a logistic ogive (a specific
shape of the IRF). Early in the development of IRT, several models were
based on a normal ogive rather than a logistic ogive. The normal ogive
model arose from the widespread use of the normal curve for statistical
models in psychology. The shape of the IRFs is nearly the same for both
models and it is difficult to say which fits reality better. The logistic ogive
is more attractive because of its mathematical simplicity, and it has
replaced the normal model in most practical implementations.

2.3.2 Scoring

The IRFs shown in Figure 2-3 represent the probability of a correct
response to each of the items. Complementary curves to each of these exist,
representing the probability of an incorrect response. The local-indepen-
dence assumption of IRT (that performance on a particular item is indepen-
dent of success or failure on other items) allows the curves corresponding to
the correct and incorrect responses in an examinee's entire test response
pattern to be multiplied together to yield a likelihood function The likeli-
hood function indicates the probability of observing the entire vector of
obtained item responses at each level of ability. From this likelihood func-
tion, an estimate of the examinee's ability can be obtained. Conceptually,
this can be done by assuming that the best estimate of an examinee's ability
is the level of ability that would most likely produce the vector of responses

observed. This is determined by locating the maximum value of the likeli-
hood function and identifying the ability level (theta) associated with that
maximum. This score is called the maximum likelihood estimate of ability.

Figure 2-4 shows three IRFs as dashed lines for three items, two answered
correctly and one answered incorrectly. The solid curve shows the product
of these curves (that is, the likelihood function). The point at which the
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likelihood function reaches its peak (the vertical dotted line) corresponds to
a theta value of approximately 0.9. This value of theta is the maximum
likelihood estimate of the examinee's ability.

Figlre 2-4. Three IRFs and a
Answered Correctly and

Likelihood Function With Two Items
One Item Answered Incorrectly
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One problem with maximum likelihood estimation is that it occasionally
produces estimates of ability at positive or negative infinity on the theta
scale. An example of this is shown in Figure 2-5. Again, three items were
presented. This time, however, the examinee answered all three correctly.
The likelihood function (the solid line) has no obvious peak since the curve
continues to rise imperceptibly as theta increases beyond 3.0. The maximum
likelihood estimate is, therefore, positive infinity.

Several methods of bounding maximum likelihood estimates have been used,
many of them practical but arbitrary. An alternative to the maximum like-
lihood method is the Bayesian modal method. A Bayesian modal estimate is
conceptually very similar to the maximum likelihood estimate; in fact, it is
simply an extension of it. It differs in that a Bayesian prior likelihood
function is included when the IRFs are multiplied together. This eliminates

2.01.0
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Figure 2-5. Three IRFs and a Likelihood Function With All Items
Answered Correctly
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the infinite estimates. Figure 2-6 shows the effect on the IRFs used in
Figure 2-5 of assuming that the distribution of theta (that is, the prior like-
lihood function) is standard normal, as shown by the dotted curve. A finite
peak of the modified likelihood function (the solid line) now exists at a

theta value of approximatelY 1.5.

2.3.3 Item Selection

Maximum likelihood and modal Bayesian ability estimation can be used

with any adaptive testing item-selection strategy when the items are

calibrated according to an IRT model. These scoring methods have

suggested some useful and flexible item-selection strategies. Because a more
peat eO tikelihood function yields a more accurate estimate of ability, it
makes good sense to explicitly select test items that will sharpen the peak of
the likelihood function.

0.2
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Figure 2-6. Three IRFs, a Normal Bayesian Prior Distribution for
Theta, and a Bayesian Posterior Likelihood Function With All

Items Answered Correctly
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Item information is a statistical concept closely related to the slope of the
IRF and inversely related to the standard error of the ability estimate that
would result if the item were administered and scored. Item information
curves are transformations of IRFs and, like IRFs, they are a function of
theta and the parameters of the item. The maximum information item-
selection strategy selects items based on item information curves. First, an
estimate of ability is obtained. The information value for each item is then
evaluated at that level of theta. The item with the highest value of
information at that theta level is chosen as the best item to administer. In a
maximum information adaptive test, a sequential process is specified in
which an item is administered, an ability estimate is calculated, the item
providing the most information at that estimate is selected, and the process
is repeated. The sequential process may continue until a fixed number of
items has been administered or until some other criterion for termination
(such as a specified value of the standard error of the ability estimate) has
been satisfied.
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The Bayesian item-selection strategy is similar to the maximum information
strategy, except that it selects items on the basis of minimizing the Bayesian
posterlor variance of the ability estimate rather than maximizing values of
-item 

information. Because of the relationships between information and the

Bayesian posterior variance, however, these item-selection strategies will
frequently select the same items. See Weiss (1982) for a discussion of the

relationships between these item-selection methods, as well as examples of
the use of adaptive testing for different testing problems.

2.4 Summary

The MicroCAT Testing System supports and facilitates conventional testing
via computer, computerized adaptive testing, individualized domain-refer-
enced testing, and f ixed-branching simulation testing. The MicroCAT
system is the only commercially available, general-purpose testing system for
tire development, administration, and scoring of computerized adaptive tests.

Computerized adaptive testing (CAT) is a method of constructing maximally
effiCient tests by tailoring the items included in a test to the examinee's
ability. A CAT strategy consists of a method for selecting items and a

method for scoring the responses. Many CAT strategies have been devel-
oped and each may be useful in a particular context. This chapter provided
some basic information about CAT which, while not replacing further study
of and experience with CAT, should give some understanding of the proce-

dures involved.
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